- 1. Determine que tipo de cônica cada uma das equações abaixo definem.
 - (a) $7x^2 + 24xy 256x 192y + 1456 = 0$ (f) $x^2 + 4xy + 4y^2 + 2x + 4y + 1 = 0$
 - (b) $3x^2 + 4xy + y^2 2x 1 = 0$ (g) $5x^2 + 4xy + y^2 6x 2y + 2 = 0$
 - (c) $x^2 y^2 + 4x 6y + 13 = 0$ (h) $4x^2 + 4xy + y^2 - 4x - 2y - 3 = 0$
 - (d) $4x^2 + 4xy + y^2 6x + 3y + 2 = 0$ (i) $2x^2 + 2y^2 3x + y 1 = 0$
 - (e) $2x^2 + 3y^2 8x + 6y 7 = 0$ (j) $4x^2 - 9y^2 + 24x + 36y + 36 = 0$
- 2. Prove que o segmento que une os pontos médios dos lados não-paralelos de um trapézio é paralelo às bases, e sua medida é a semi-soma das medidas das bases (Figura 1a).
- 3. Prove que o segmento que une os pontos médios das diagonais de um trapézio é paralelo às bases, e sua medida é a semi-diferença das medidas das bases (Figura 1b).

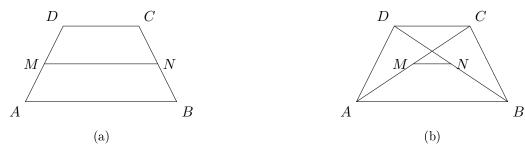


Figura 1

- 4. Em cada caso, calcule m para que os vetores sejam LD.
 - (a) $\vec{u} = (m, 1, m), \vec{v} = (1, m, 1).$
 - (b) $\vec{u} = (m, 1, m + 1), \vec{v} = (1, 2, m), \vec{w} = (1, 1, 1).$
 - (c) $\vec{u} = (1 m^2, 1 m, 0), \vec{v} = (m, m, m).$
 - (d) $\vec{u} = (m, 1, m+1), \vec{v} = (0, 1, m), \vec{w} = (0, m, 2m).$
- 5. Suponha que $(\vec{u}, \vec{v}, \vec{w})$ seja LI. Dado t, sejam α , β e γ tais que $\vec{t} = \alpha \vec{u} + \beta \vec{v} + \gamma \vec{w}$. Prove que $(\vec{u} + \vec{t}, \vec{v} + \vec{t}, \vec{w} + \vec{t})$ é LI se, e somente se, $\alpha + \beta + \gamma + 1 \neq 0$.
- 6. Sejam $E=(\vec{e_1},\vec{e_2},\vec{e_3})$ e $F=(\vec{f_1},\vec{f_2},\vec{f_3})$ duas bases tais que $\vec{f_1}=2\vec{e_1},\ \vec{f_2}=\vec{e_2},\ \vec{f_3}=2\vec{e_1}+\vec{e_2}-7\vec{e_3}$.
 - (a) Escreva a matriz de mundança de base de E para F.
 - (b) Exprima o vetor $\vec{u} = \vec{e}_1 + \vec{e}_2 + \vec{e}_3$ na base F.
 - (c) Escreva a matriz de mundança de base de F para E.
 - (d) Exprima o vetor $\vec{u} = \vec{f_1} 2\vec{f_2} + \vec{f_3}$ na base E.
- 7. Dados $\vec{v} = (1, 1, 1)$, $\vec{w} = (0, 1, -1)$ e $\vec{t} = (2, 1, -1)$, obtenha \vec{u} de norma $\sqrt{5}$, ortogonal a \vec{t} , tal que $\{\vec{u}, \vec{v}, \vec{w}\}$ seja LD. Algum dos vetores encontrados forma ângulo agudo com (-1, 0, 0)?
- 8. Sendo \vec{u} e \vec{v} unitários, $||\vec{w}|| = 4$, $\vec{u} \cdot \vec{w} = -2$, $\vec{v} \cdot \vec{w} = -4$, e ang $(\vec{u}, \vec{v}) = \frac{\pi}{3}$ radianos, calcule:

(a)
$$(\vec{u} + \vec{v} + \vec{w}) \cdot \vec{u}$$

(c)
$$(5\vec{u} - \vec{w}) \cdot (\vec{w} - 2\vec{u})$$

(b)
$$(2\vec{u} - \vec{v} + \vec{w}) \cdot (\vec{u} + \vec{v})$$

(d)
$$(\vec{w} - \vec{v} + \vec{u}) \cdot (-\vec{u} + 2\vec{w} + \vec{v})$$

- 9. Sabendo que $\vec{u} + \vec{v} + \vec{w} = \vec{0}, \, ||\vec{u}|| = \frac{3}{2}, \, ||\vec{v}|| = \frac{1}{2}$ e $||\vec{w}|| = 2$, calcule $\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}$.
- 10. Prove as seguintes identidades:

(a)
$$||\vec{u} + \vec{v}||^2 + ||\vec{u} - \vec{v}||^2 = 2(||\vec{u}||^2 + ||\vec{v}||^2);$$
 (b) $||\vec{u} + \vec{v}||^2 - ||\vec{u} - \vec{v}||^2 = 4\vec{u} \cdot \vec{v};$

- 11. Prove os seguintes fatos a cerca de paralelogramos:
 - (a) a soma dos quadrados dos comprimentos das diagonais de um paralelogramo é igual à soma dos quadrados dos comprimentos dos quatro lados;
 - (b) a diagonal maior de um paralelogramo é maior do que cada um dos quatro lados.
 - (c) as diagonais de um paralelogramo têm comprimentos iguais se, e somente se, o paralelogramo é um retângulo.
- 12. Prove as seguintes desigualdades e caracterize os vetores para os quais valem a igualdade.

(a)
$$|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| \, ||\vec{v}||$$
:

(a)
$$|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| \, ||\vec{v}||$$
; (b) $||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||$; (c) $||\vec{u} - \vec{v}|| \le ||\vec{u}|| - ||\vec{v}||$;

(c)
$$||\vec{u} - \vec{v}|| \le ||\vec{u}|| - ||\vec{v}||$$

13. Seja ABCD um retângulo de diagonal BD. Prove que $||\overrightarrow{DP}||^2 + ||\overrightarrow{BP}||^2 = ||\overrightarrow{AP}||^2 + ||\overrightarrow{CP}||^2$, qualquer que seja o ponto P (Figura 2).

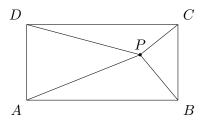


Figura 2: Teorema da Bandeira Britânica.