Combinatória I: Lista 2

1. Use the Janson inequalities and Harris' lemma to prove that if pn = c, then

$$\mathbb{P}(K_3 \subset G(n,p)) \to 1 - e^{-c^3/6}$$

as $n \to \infty$.

2. Show that, for every graph H, there exists $\delta > 0$ such that the following holds for all sufficiently large $n \in \mathbb{N}$. If G is a graph on n vertices with

$$e(G) > (1-\delta)\binom{n}{2},$$

then in every r-colouring of E(G) there are at least $\delta n^{v(H)}$ monochromatic copies of H.

3. Prove that there exist triangle-free graphs with arbitrarily large chromatic number.

4. Prove that there exists a tournament of order n containing at least $2^{-n}(n-1)!$ directed Hamiltonian cycles. (An ordering (v_1, \ldots, v_n) of the vertices is a directed Hamiltonian cycle if v_i beat v_{i+1} for every $i \in \mathbb{Z}_n$.)

5. Say that a k-uniform hypergraph G is said to be 2-colourable if there exists a partition $V(G) = A \cup B$ with no edges entirely contained in either A or B. Let b(k) denote the minimum number of edges in a k-uniform hypergraph that is not 2-colourable.

(a) By considering a random colouring, show that $b(k) \ge 2^{k-1}$.

(b) By considering a random hypergraph, prove an upper bound for b(k).

6. Show that any finite set A of integers contains a sum-free subset of size at least |A|/3.¹

7. Let (e_1, \ldots, e_m) be an arbitrary ordering of the edges of a graph G on n vertices. Show that there exists an increasing walk (in this ordering) of length at least d = 2m/n.

8. Show that the number of triangle-free graphs on n vertices is $2^{n^2/4+o(n^2)}$.

9. Show that almost all triangle-free graphs are $o(n^2)$ -close to being bipartite.

10. Prove Thomassen's theorem: for every $\alpha > 0$ there exists C such that every triangle-free graph with minimum degree $\delta(G) > (1/3 + \alpha)n$ has chromatic number at most C.²

11. Show that $\mathbf{ex}(n, C_5) = \lfloor n^2/4 \rfloor$ for every sufficiently large n.

¹Hint: multiply by a random number modulo some prime p, and consider the middle third.

²Hint: show that for each $I \subset [k]$, the set $X_I := \{v : |N(v) \cap V_i| \ge \beta |V_i| \Leftrightarrow i \in I\}$ is independent.