Combinatória I 2019: Lista 2

1. Determine the threshold for the event $\{K_r \subset G(n,p)\}$. Is the threshold sharp?

2. Prove that if T is a tree with k vertices, then $r(K_r, T) = (r-1)(k-1) + 1$.

3. Prove that $R(3,k) \ge k^{1+c}$ for some c > 0.

4. Say that a k-uniform hypergraph G is said to be 2-colourable if there exists a partition $V(G) = A \cup B$ with no edges entirely contained in either A or B. Let b(k) denote the minimum number of edges in a k-uniform hypergraph that is not 2-colourable.

(a) By considering a random colouring, show that $b(k) \ge 2^{k-1}$.

(b) By considering a random hypergraph, prove an upper bound for b(k).

5. Show that, for every graph H, there exists $\delta > 0$ such that the following holds for all sufficiently large $n \in \mathbb{N}$. If G is a graph on n vertices with

$$e(G) > (1-\delta)\binom{n}{2},$$

then in every r-colouring of E(G) there are at least $\delta n^{v(H)}$ monochromatic copies of H.

6. Suppose we are given n points and n lines in the plane. Show that there are at most $n^{3/2}$ point-line incidences.

7. Prove that there exists a tournament of order n containing at least $2^{-n}(n-1)!$ directed Hamiltonian cycles. (An ordering (v_1, \ldots, v_n) of the vertices is a directed Hamiltonian cycle if v_i beat v_{i+1} for every $i \in \mathbb{Z}_n$.)

8. Let (e_1, \ldots, e_m) be an arbitrary ordering of the edges of a graph G on n vertices. Show that there exists an increasing walk (in this ordering) of length at least d = 2m/n.

9. Prove that if $p \gg \frac{\log n}{n}$ then with high probability G(n,p) contains a perfect matching.

10. Show that the number of triangle-free graphs on n vertices is $2^{n^2/4+o(n^2)}$.

11. Show that almost all triangle-free graphs are $o(n^2)$ -close to being bipartite.

12. Use the triangle removal lemma to prove that for every 3-uniform hypergraph \mathcal{H} with at least αn^2 edges (where $\alpha > 0$ is fixed and n is sufficiently large), there exists a set of 6 vertices that contains at least 3 edges of \mathcal{H} .

13. Show that $\mathbf{ex}(n, C_5) = \lfloor n^2/4 \rfloor$ for every sufficiently large n.