Combinatória I: Lista 1

1. Show that every graph (of order at least 2) has two vertices of the same degree. Show also that there do *not* necessarily exist three vertices of the same degree.

2. By defining, and calculating the expectation of, a suitable random variable, show that every graph G has a bipartite subgraph with at least e(G)/2 edges.

3. Show that every planar graph has chromatic number at most 6, and every triangle-free planar graph has chromatic number at most 4.

4. Show that if T is a tree with k vertices and G is a graph with minimum degree k - 1, then $T \subset G$. Deduce that $r(K_3, T) = 2k - 1$.

5. Show that every graph of average degree d contains a subgraph of minimum degree at least d/2. Deduce that $\mathbf{ex}(n,T) \leq (k-1)n$ for every tree T with k vertices.

6. Let T_1, \ldots, T_k be subtrees of a tree T, any two of which have at least one vertex in common. Prove that there is a vertex in all the T_i .

7. Let $R_r(3)$ denote the r-colour Ramsey number of a triangle. Show that

$$2^r \leqslant R_r(3) \leqslant 3 \cdot r!$$

Show moreover that $R_r(3) \ge 5^{r/2}$.

8. Recall that $\alpha(G)$ denotes the size of the largest independent set in G. Show that, for every graph G,

$$\alpha(G) \ge \sum_{v \in V(G)} \frac{1}{d(v) + 1}.$$

9. Let C(s) be the smallest *n* such that every connected graph on *n* vertices has, as an *induced* subgraph, either a complete graph K_s , a star $K_{1,s}$ or a path P_s of length *s*.

Show that $C(s) \leq R(s)^s$, where R(s) is the Ramsey number of s.

10. Let G be a (not necessarily planar) graph with |G| = n and e(G) = m. Suppose that G is drawn in the plane, but with edges allowed to cross. Let t be the number of pairs of edges which cross. Show that $t \ge m - 3n + 6$.

Suppose now $m \ge 4n$. By considering a random set $W \subset V(G)$ containing each vertex of G independently with probability 4n/m, show that in fact $t \ge m^3/64n^2$.

11. Show that there is an infinite set S of positive integers such that the sum of any two distinct elements of S has an even number of distinct prime factors.