Problema 1. Cada uma das afirmações seguintes pode ser formulada na forma "se-então". Reescreva cada uma das sentenças abaixo na forma "se A, então B".

- (a) O produto de um inteiro ímpar e um inteiro par é par.
- (b) O quadrado de um inteiro ímpar é ímpar.
- (c) O quadrado de um número primo não é primo.
- (d) O produto de dois inteiros negativos é negativo. (Naturalmente, isso é falso.)
- (e) As diagonais de um losango são perpendiculares.
- (f) Triângulos congruentes têm a mesma área.
- (g) A soma de três inteiros consecutivos é divisível por três.

Problema 2. Determine se as seguintes expressões lógicas são tautologias. Para cada expressão, justifique sua resposta (tabela-verdade ou transformações equivalentes).

(a)
$$((p \to q) \land (q \to r)) \to (p \to r)$$

(h)
$$(p \land q) \lor (\neg p \land \neg q)$$

(b)
$$((p \to q) \land (p \to \neg q)) \to \neg p$$

(i)
$$p \to (q \lor r) \leftrightarrow (p \to q) \lor (p \to r)$$

(c)
$$(p \land (p \rightarrow q)) \rightarrow q$$

(j)
$$p \lor (q \land r) \leftrightarrow (p \lor q) \land (p \lor r)$$

(d)
$$(p \to q) \leftrightarrow (\neg q \to \neg p)$$

(k)
$$p \wedge (q \vee r) \leftrightarrow (p \wedge q) \vee (p \wedge r)$$

(e)
$$(p \lor q) \land (\neg p \lor r) \rightarrow (q \lor r)$$

(1)
$$((p \to q) \land (q \to p)) \to (p \leftrightarrow q)$$

(f)
$$(p \to q) \lor (q \to p)$$

(m)
$$((p \to q) \land (p \to \neg q)) \to p$$

(g)
$$(p \oplus q) \leftrightarrow \neg (p \leftrightarrow q)$$

(n)
$$(p \to (q \to r)) \leftrightarrow ((p \land q) \to r)$$

Problema 3. Considere os seguintes predicados lógicos:

- O(p): A impressora p está ocupada.
- Q(p): A impressora p está quebrada.
- P(t): A impressão do trabalho t foi perdida.
- F(t): A impressão do trabalho t foi adicionada à fila.

Transcreva cada uma das especificações abaixo para o português.

(a)
$$\exists p (Q(p) \land O(p)) \rightarrow \exists t P(t)$$

(c)
$$\exists t (F(t) \land P(t)) \rightarrow \exists p Q(p)$$

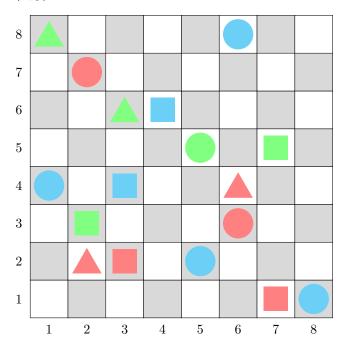
(b)
$$\forall p \, O(p) \rightarrow \exists t \, F(t)$$

(d)
$$(\forall p \, O(p) \land \forall t \, F(t)) \rightarrow \exists t \, P(t)$$

Problema 4. A figura a seguir mostra a disposição de alguns objetos em um tabuleiro de xadrez. Por exemplo, há um triângulo verde na casa de coordenada (1,8), um círculo azul na coluna 8, e dois objetos verdes na linha 5.

Podemos expressar a configuração dos objetos no tabuleiro por meios de predicados lógicos. Por exemplo, o predicado Triângulo(x,y) indica se há um triângulo na casa de coordenada (x,y), de modo que ele retorna **verdadeiro** caso haja de fato, e **falso** caso contrário. Da mesma forma, os predicados Quadrado(x,y) e Círculo(x,y) indicam se na casa de coordenadas (x,y) há um quadrado ou um círculo, respectivamente.

Já os predicados Azul(x, y), Vermelho(x, y) e Verde(x, y) indicam se é verdade que há um objeto na casa de coordenada (x, y) colorido de azul, vermelho ou verde, respectivamente. Por fim, o predicado Vazio(x, y) é verdadeiro somente se a casa de coordenada (x, y) estiver vazia.



Determine a veracidade de cada uma das seguintes proposições abaixo com base no tabuleiro acima e justifique a sua resposta.

- (a) $\forall x, y \; (\text{Triângulo}(x, y) \to \neg \text{Azul}(x, y))$
- (b) $\forall x, y \ (\neg \text{Azul}(x, y) \to \text{Triângulo}(x, y))$
- (c) $\exists x, y \ (\neg Azul(x, y) \to (Triângulo(x, y) \lor Vazio(x, y)))$
- (d) $\exists x, y \ (\neg Vermelho(x, y) \land Triângulo(x, y))$
- (e) $\forall x \exists y \ (\neg Vazio(x, y) \land \neg Triângulo(x, y))$
- (f) $\exists y \, \forall x \, (\text{Vazio}(x,y) \vee (\neg \text{Triângulo}(x,y) \wedge \text{Verde}(x,y))$
- (g) $\exists x \, \forall y \, (\text{C\'irculo}(x, y) \vee \neg (\text{Quadrado}(x, y) \vee \text{Triângulo}(x, y)))$

Problema 5. Este problema é uma continuação do problema anterior, portanto considere os predicados definidos anteriormente. Representaremos cada casa do tabuleiro por uma variável c ao invés de suas coordenadas, como fizemos no problema anterior. Considere os seguinte predicados que têm como variávels c e d cujo domínio é o cojunto das 64 casas do tabuleiro.

Esquerda(c,d): A casa c está a esquerda da casa d.

 $Acima(c,d): A \ casa \ c \ está \ acima \ da \ casa \ d.$

Com o auxílio de tais predicados, podemos expressar afirmações tais como "todo quadrado tem a casa acima vazia" da seguinte forma:

```
\forall c \, \text{Quadrado}(c) \rightarrow \exists d(\text{Acima}(d, c) \land \text{Vazio}(d)).
```

Escreva expressões lógicas para cada uma das afirmações abaixo usando apenas os predicados acima e os do problema anterior.

- (a) Todo círculo azul contém um quadrado a esquerda.
- (b) Todo objeto azul contém um objeto verde abaixo.
- (c) Existe um quadrado com um triângulo abaixo.
- (d) Existe uma casa vazia com um quadrado acima e um triângulo a esquerda.
- (e) Existe uma casa com um objeto verde nos dois lados.
- (f) Existe uma coluna contendo apenas um círculo na sua casa mais baixa.

Problema 6. Sejam P(x) e Q(x) predicados e suponha que D é o domínio de x. Determine, para cada par de fórmulas abaixo se elas possuem o mesmo valor lógico para toda escolha de P(x), Q(x) e D, ou se existe alguma escolha de P(x), Q(x) e D na qual elas têm valores lógicos diferentes.

```
(a) \forall x \in D, (P(x) \land Q(x)) e (\forall x \in D, P(x)) \land (\forall x \in D, Q(x))
```

(b)
$$\exists x \in D, (P(x) \land Q(x))$$
 e $(\exists x \in D, P(x)) \land (\exists x \in D, Q(x))$

(c)
$$\forall x \in D$$
, $(P(x) \vee Q(x))$ e $(\forall x \in D, P(x)) \vee (\forall x \in D, Q(x))$

(d)
$$\exists x \in D, (P(x) \vee Q(x))$$
 e $(\exists x \in D, P(x)) \vee (\exists x \in D, Q(x))$

Problema 7. Prove as seguintes afirmações sobre inteiros:

- (a) A soma de dois inteiros ímpares é par.
- (b) O produto de dois inteiros pares é divisível por 4.
- (c) O produto de dois inteiros ímpares é ímpar.
- (d) Suponha que a, b, c sejam números inteiros. Se $a \mid b \in a \mid c$, então $a \mid (b + c)$.
- (e) Suponha que a, b, c, d sejam inteiros. Se $a \mid b \in c \mid d$, então $(ac) \mid (bd)$.

Problema 8. Quantas listas de 3 elementos podem ser formadas em que as entradas sejam provenientes de um conjunto de n elementos possíveis se exigirmos que a primeira e a última entrada da lista sejam as mesmas? Quantas dessas listas podem ser formadas se exigirmos que as primeiras e últimas entradas sejam diferentes? (Em ambos os casos, não existe qualquer restrição na entrada do meio na lista).

Problema 9. Quantos números de cinco dígitos existem que não entram dois dígitos consecutivos iguais? Por exemplo, você contaria 12104 e 12397, mas não 6321 (não tem cinco dígitos) ou 43356 (ele tem dois 3 consecutivos). *Nota:* o primeiro dígito não pode ser um zero.

Problema 10. Quatro cartas são retiradas de um baralho de 52 cartas. De quantas maneiras isso pode ser feito se as cartas são todas de valores diferentes (por exemplo, não há dois 5 ou dois valetes) e todos de naipes diferentes (para este problema, a ordem em que as cartas são tiradas importa, de modo que A -K - K - 3 - 6 não é o mesmo que 6 -K - K - 3, mesmo que as mesmas sejam selecionadas)?

Problema 11. Suponha que existam três caminhos da cidade A para a cidade B e cinco caminhos da cidade B para a cidade C.

- (a) De quantas maneiras é possível viajar da cidade A para a cidade C passando pela cidade B?
- (b) Quantos percursos diferentes de ida e volta existem, de A para B, para C, de volta para B e então de volta para A?
- (c) Quantos percursos diferentes existem de A para B, para C, de volta para B e de volta para A, nos quais nenhuma estrada é percorrida duas vezes?

Problema 12. Suponha que todas as placas de automóvel no Brasil tenham quatro letras maiúsculas seguidas por três dígitos.

- (a) Quantas placas diferentes são possíveis?
- (b) Quantas placas podem começar com A e terminar com 0?
- (c) Quantas placas podem começar com NADA?
- (d) Quantas placas são possíveis nas quais todas as letras e todos os dígitos são distintos?
- (e) Quantas placas podem começar com EX e ter todas as letras e todos os dígitos distintos?