Enviar as soluções de 3 exercícios a sua escolha para o email walner+comb@mat.ufc.br.

Exercício 1. Mostre que para toda 2-coloração de [9], existe uma 3-PA monocromática.

Exercício 2. Mostre que para toda r-coloração de \mathbb{N} , existem $x_0, x_1, \ldots, x_k \in \mathbb{N}$ da mesma cor tais que $x_0 = x_1 + \cdots + x_k$.

Exercício 3. Mostre que para toda 2-coloração de \mathbb{N}^2 , existe $(x, y, s) \in \mathbb{N}^3$ de modo que o conjunto $\{x, x + s, x + 2s\} \times \{y, y + s, y + 2s\}$ é monocromático:

Exercício 4. Mostre que para toda coloração do cubo $\{0,1\}^r$ com r cores, pelo menos uma linha combinatória é monocromática.

Exercício 5. Mostre que para toda 2-coloração de $[3]^8$, existe uma linha combinatória monocromática.