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Abstract

In this thesis we address three problems in Graph Ramsey Theory: the size-Ramsey number
of powers of trees, covering edge-colourings of random graphs by monochromatic trees, and
monochromatic tiling in edge-coloured complete graphs.

Given a positive integer r, the r-colour size-Ramsey number of a graph H is the smallest
integer m such that there exists a graph G with m edges for which any colouring of E(G)

with r colours has a monochromatic copy of H. In the first result in this thesis, we prove
that for any positive integers k and r, the r-colour size-Ramsey number of the kth power
of any n-vertex bounded degree tree is linear in n. As a corollary, we obtain that the r-
colour size-Ramsey number of n-vertex graphs with bounded treewidth and bounded degree
is linear in n.

In the second result in this thesis, we are interested in determining how many monochro-
matic trees are necessary to cover the vertices of an edge-coloured random graph. We show
that if p ≫ n−1/6(lnn)1/6, then for every 3-edge-colouring of the random graph G(n, p),
there are three monochromatic trees such that their union covers all the vertices of G(n, p).
This improves, for three colours, a result of Bucić, Korándi and Sudakov.

In the third result of this thesis, we prove that for all integers ∆, r ≥ 2, there is a constant
C = C(∆, r) > 0 such that the following holds for every sequence F = {F1, F2, . . .} of graphs
with v(Fn) = n and ∆(Fn) ≤ ∆: in every r-edge-coloured Kn, there is a collection of at
most C monochromatic copies of graphs from F partitioning V (Kn). This makes progress
on a conjecture of Grinshpun and Sárközy.
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Resumo

Nesta tese, abordamos três problemas na Teoria de Ramsey para Grafos: o número tamanho-
Ramsey para potência de árvores, cobertura com árvores monocromáticas em colorações de
arestas de grafos aleatórios, e azulejamento monocromático em grafos completos coloridos.

Dado um número inteiro positivo r, o número tamanho-Ramsey com r cores de um grafo
H é o menor número inteiro m para o qual exista um grafo G com m arestas com a pro-
priedade de que, em qualquer coloração de E(G) com r cores, há uma cópia monocromática
de H. No primeiro resultado desta tese, provamos que para quaisquer números inteiros
positivos k e r, o número tamanho-Ramsey com r cores de uma k-potência de qualquer
árvore com n vértices e grau máximo limitado é linear em n. Como corolário, obtemos que
o número tamanho-Ramsey com r cores de grafos com n vértices e com largura de árvore
limitada e grau máximo limitado é linear em n.

No segundo resultado desta tese, estamos interessados em determinar quantas árvores
monocromáticas são necessários para cobrir os vértices de um grafo aleatório aresta-colorido.
Mais precisamente, mostramos que se p ≫ n−1/6(lnn)1/6, então para cada 3-coloração das
arestas do grafo aleatório G(n, p) existem três árvores monocromáticas tais que a união delas
cobre todos os vértices. Isso melhora, para três cores, um resultado de Bucić, Korándi and
Sudakov.

No nosso terceiro resultado, provamos que para todos números inteiros ∆, r ≥ 2, ex-
iste uma constante C = C(∆, r) > 0, tal que o seguinte vale para toda sequência F =

{F1, F2, . . .} de grafos com v(Fn) = n e ∆(Fn) ≤ ∆: para toda r-aresta-coloração de Kn,
existe uma coleção de no máximo C cópias monocromáticas de grafos em F particionando
V (Kn). Tal resultado é um progresso em uma conjectura de Grinshpun e Sárközy.
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Chapter 1

Introduction

The classical Ramsey problem for graphs asks whether there must exist monochromatic
subgraphs in colourings of large graphs. Given graphs G and H and a positive integer r, we
say that G is r-Ramsey for H, and we write G → (H)r, if in any r-colouring of the edges
of G there is a monochromatic copy of H. For r = 2, we simply say that G is Ramsey for
H and denote G → H. The classical theorem of Ramsey [92] states that for every positive
integers t and r, there exists an integer n such that Kn → (Kt)r. The r-colour Ramsey
number Rr(H) of a graph H is the minimum positive integer n such that Kn → (H)r. We
denote by R(H) the 2-colour Ramsey number of H.

Extensive research has been developed around Ramsey numbers, beginning with the
work of Erdős and Szekeres [43], who in 1935 proved a recursion formula for the so called
off-diagonal Ramsey numbers yielding the follow inequality:

R(Kt) ≤
(
2t− 2

t− 1

)
.

In particular, R(Kt) ≤ 22t. In 1947, as one of the earliest application of the probabilistic
method, Erdős [40] proved that R(Kt) ≥ 2t/2. Surprisingly, despite efforts of many re-
searchers, the upper bound has only been improved by a sub-exponential factor (see [26]),
and the lower bound has only been improved by Spencer [98] in 1975 by a factor of 2.

Ramsey numbers have been a vibrant research area in Combinatorics. The survey of
Conlon, Fox and Sudakov [29] describes some of the results in the theory. Besides complete
graphs, the most studied class of graphs has been the class of bounded-degree graphs.
In 1983, Chvatál, Rödl, Szemerédi and Trotter [23], confirming a conjecture of Burr and
Erdős [19], proved that for every positive integer ∆, there is a positive real number C

such that if ∆(H) ≤ ∆, then R(H) ≤ C|H|. However, their proof, as an application
of Szemerédi’s regularity lemma, gave an upper bound for C that grows as a tower of
height polynomial in ∆. This bound has been improved by Eaton [36], Graham, Rödl
and Ruciński [52] and finally by Conlon, Fox and Sudakov [28], who proved in 2012 that
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1. INTRODUCTION

there exists a constant c such that any graph H with maximum degree ∆ satisfies R(H) ≤
2c∆log∆|H|. Conlon, Fox and Sudakov also conjectured (see [29]) that the logarithmic factor
in the exponent is unnecessary.

Another important class of graphs that has been extensively explored in the literature
is the class of graphs of bounded degeneracy. The degeneracy of a graph G is the smallest
positive integer d such that every subgraph of G has minimum degree at most d. Burr and
Erdős [19] conjectured in 1975 that for every positive integer d, there is a constant Cd such
that for every graph H with degeneracy at most d we have R(H) ≤ Cd|H|. This conjecture
remained open for more than four decades. The first polynomial bound was established in
2004 by Kostochka and Rödl [75], who proved that R(H) ≤ Cd∆(H)|H|, for every graph H

with degeneracy at most d (in particular, this gives a quadratic upper bound). Kostochka
and Sudakov [76] showed an almost linear upper bound using the dependent random choice
technique and Fox and Sudakov [47] refined their method to prove that for every graph H

with degeneracy at most d we have R(H) ≤ 2Cd

√
log |H||H|. The conjecture of Burr and

Erdős was finally settled in 2017 by Lee [80] who proved that there exists a constant c for
which every graph H with degeneracy at most d, chromatic number at most r and at least
2d

22cr vertices, satisfies R(H) ≤ 2d2
cr |H|. Since graphs with degeneracy at most d have

chromatic number at most d + 1, this gives the upper bound R(H) ≤ 22
Cd |H|, for every

graph H with degeneracy at most d (where C is an universal constant).
Substantial research has also been developed around the following asymmetric variant

of the Ramsey numbers. Given graphs F and H, the off-diagonal Ramsey number of the
pair (F,H), denoted by R(F,H), is the smallest n such that every red-blue colouring of the
edges of Kn contains a red copy of F or a blue copy of H. If F is connected, then χ(H)− 1

disjoint red cliques of order |F | − 1 with all the edges between them coloured blue shows
that R(F,H) ≥ (χ(H)−1)(|F |−1)+1. If we denote by σ(H) the size of the smallest colour
class in every optimal proper colouring of H, then we get the slightly better lower bound
R(F,H) ≥ (χ(H)−1)(|F |−1)+σ(H) by adding to the previous construction a red clique of
order σ(H)−1 and colouring blue all the edges incident on this clique. This simple inequality
due to Burr [18] has been shown to be tight for many pairs of graphs. We say that F is
H-good if R(F,H) = (χ(H)−1)(|F |−1)+σ(H) and we say that F is t-good if it is Kt-good.
Chvátal [24] showed that every tree is t-good, for every t ∈ N. Burr and Erdős [20] showed
that sufficiently large powers1 of paths are t-good, while Allen, Brightwell and Skokan [3]
generalized their result to H-goodness for every graph H (they in fact proved a more general
result that covers many other classes of graphs besides powers of paths). Balla, Pokrovskiy
and Sudakov [8] proved that sufficiently large bounded-degree trees are H-good, for every
graph H. Fiz Pontiveros, Griffiths, Morris, Saxton and Skokan [44] showed that sufficiently
large hypercubes are H-good, for every graph H. The reader can find more results about

1The kth power of a graph G is the graph Gk with vertex set V (G) and edges consisting of pairs of
vertices at distance at most k in G.
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1. INTRODUCTION

Ramsey goodness in the survey [29].
Historically, the theory of Ramsey numbers has been closely related to the theory of

random sparse graphs. Indeed, the latter has been used to prove the existence of Ramsey
graphs with peculiar structures. For instance, in 1986, Frankl and Rödl [48], motivated by
a question of Erdős and Nešetřil [38], used the random graph G(n, p) to construct a fairly
small graph G such that K4 ⊈ G and G → K3. Those graphs were previously explicitly
constructed by Nešetřil and Rödl [87] (in a more general context). However, the graphs they
constructed were extremely large. Frankl and Rödl’s result relied on proving that for every
ε > 0, the random graph G(n, p) on n vertices, where each edge is included independently
with probability p ≥ n−1/2+ε, is Ramsey for K3 with high probability. Łuczak, Ruciński and
Voigt [84] improved this by showing that n−1/2 is the threshold for the event G(n, p) → K3.

Since then, the study of Ramsey properties involving random graphs has become an
active research area in combinatorics, with the most celebrated result being the theorem of
Rödl and Ruciński [93] from 1995 that establishes the threshold for the symmetric Ramsey
property G(n, p) → H, for any graph H. In 1997, Kohayakawa and Kreuter [67] formu-
lated a conjecture concerning the threshold for the asymmetric Ramsey property in G(n, p).
The conjectured upper bound for the threshold was proved under some assumptions by Ko-
hayakawa, Schacht and Spöhel [71]. Recently, Mousset, Nenadov and Samotij [86] proved
the upper bound in full generality, using the containers method of Balogh, Morris and
Samotij [9] and Saxton and Thomason [97]. However, the conjectured lower bound for the
threshold has only been proved for pairs of cycles [67] and pairs of cliques [85].

The r-colour size-Ramsey number r̂r(H) of H is the minimum number of edges in a
graph G such that G → (H)r. Erdős [39] asked in 1981 whether we have r̂2(Pn) ≫ n. In
1983, Beck [10] answered Erdős’ question negatively by proving that r̂2(Pn) = O(n). His
proof essentially consisted of showing that for some large constant C, with high probability,
the random graph G(Cn, n−1) is Ramsey for Pn. Alon and Chung [4] provided an explicit
construction of graphs with O(n) edges that are Ramsey for Pn. Beck also conjectured that
for every positive integer ∆, there is a constant C such that for every tree T with ∆(T ) ≤ ∆,
we have r̂2(T ) ≤ C|T |. This was proved by Friedman and Pippenger [49] in 1987, in a more
general setting which also implies the corresponding result for arbitrarily many colours.

Recently, Clemens, Jenssen, Kohayakawa, Morrison, Mota and Reding [25] generalized
Beck’s result to powers of paths by proving that the 2-colour size-Ramsey number of the kth
power of a path on n vertices is linear (as a function of n). This result was later extended
to any fixed number r of colours by Han, Jenssen, Kohayakawa, Mota and Roberts [57].
In Chapter 2, in a work developed together with Berger, Kohayakawa, Maesaka, Martins,
Mota, and Parczyk, we generalize the result from [57] to bounded powers of bounded degree
trees. More precisely, we prove the following theorem.

Theorem I. For every positive integers k, ∆ and s, there exists C > 0 such that for any

3



1. INTRODUCTION

n-vertex tree T with ∆(T ) ≤ ∆, we have r̂s(T
k) ≤ Cn.

Another important class of Ramsey-type problems concerns monochromatic covering and
monochromatic partitioning of edge-coloured graphs. This line of research was initiated by
Gerencsér and Gyárfás [51], who in 1967 proved, among other things, that for any 2-edge-
colouring of Kn, there is a partition of V (Kn) into 2 monochromatic paths. This result
has been generalized in several ways. For instance, in 1979, Lehel (see [6]) conjectured that
in every 2-edge-colouring of Kn, there are two monochromatic cycles2 of different colours
whose vertex sets partition V (Kn). This conjecture was proved for sufficiently large n by
Łuczak, Rödl and Szemerédi [83]; for smaller n, but still large, by Allen [2]; and finally, in
2010, Bessy and Thomassé [11] proved it for every n.

In a seminal paper from 1991, Erdős, Gyárfás and Pyber [42], in an attempt to generalize
Gerencsér and Gyárfás’ result, conjectured that for any r-edge-colouring of Kn there is a
partition of V (Kn) into r monochromatic paths. In 2014, Pokrovskiy [89] confirmed this
conjecture for r = 3, however the conjecture is still open for larger values of r. Erdős,
Gyárfás and Pyber conjectured further that one can partition V (Kn) into r monochromatic
cycles. For r = 2, this corresponds to Lehel’s conjecture. Pokrovskiy [89] showed that this
conjecture is false for r ≥ 3 by providing an r-edge-colouring of the complete graph Kn such
that any collection of r disjoint monochromatic cycles covers at most n−1 vertices. However,
he conjectured that in every r-edge-colouring of Kn, there are r disjoint monochromatic
cycles covering all but O(1) vertices. Currently, the best result concerning partitions into
monochromatic cycles is due to Gyárfás, Ruszinkó, Sárközy and Szemerédi [55] who proved
in 2006 that in every r-edge-colouring of Kn, there are O(r log r) monochromatic cycles
partitioning V (Kn).

Erdős, Gyárfás and Pyber were also interested in generalizing the original result of
Gerencsér and Gyárfás to partitioning into monochromatic trees instead of paths. Given a
graph G and a positive integer r, let tpr(G) denote the minimum number k for which in
any r-edge-colouring of G, there are k monochromatic trees T1, . . . , Tk such that their vertex
sets partition V (G), i.e.,

V (G) = V (T1)∪̇ . . . ∪̇V (Tk).

We define tcr(G) analogously by not requiring the union above to be disjoint. In particular,
tcr(G) ≤ tpr(G). An old remark commonly credited to Rado is that for every positive
integer n we have tp2(Kn) = 1. Erdős, Gyárfás and Pyber proved that tp3(Kn) = 2 and
they conjectured that for every r ≥ 2, we have tpr(Kn) ≤ r−1. Haxell and Kohayakawa [58]
proved that for every r ≥ 3, there exists n0 such that tpr(Kn) ≤ r, for n ≥ n0. Bal
and DeBiasio [7] generalized Haxell and Kohayakawa’s result by showing that for every

2In this thesis, we adopt the convention that a vertex corresponds to a cycle of size one, while an edge
corresponds to a cycle of size two.
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1. INTRODUCTION

positive integer r there exists n0 such that for every graph G with n ≥ n0 vertices and
δ(G) ≥ (1 − 1/er!)n, we have tpr(G) ≤ r. On the other hand, it is easy to see that
tcr(Kn) ≤ r, for every n. However, even a weaker version of Erdős, Gyárfás and Pyber’s
conjecture stating that tcr(Kn) ≤ r − 1 remains open for r ≥ 4.

Gyárfás [54] noticed that a well-known conjecture of Ryser is equivalent to the statement
that for every graph G and positive integer r we have tcr(G) ≤ (r − 1)α(G), where α(G)

denotes the independence number of G. Ryser’s conjecture for r = 2 is equivalent to König-
Egerváry’s theorem and for r = 3 has been proved by Aharoni [1] in 2001; however, it
remains open for larger values of r. Haxell and Scott [61] proved in 2012 a weaker version
of Ryser’s conjecture for r = 4 and r = 5. They proved that there is some ε > 0 such that
we have tcr(G) ≤ (r − ε)α(G), for every graph G and r ∈ {4, 5}.

In 2017, Bal and DeBiasio [7], motivated by the work of Rödl and Ruciński [93] on
the Ramsey property of random graphs, initiated the study of covering random graphs by
monochromatic trees. They conjectured that for any r ≥ 2, the threshold for the event
tcr(G(n, p)) ≤ r has order (log n/n)1/r. This conjecture was verified for r = 2 by Ko-
hayakawa, Mota and Schacht [68] (they actually showed that tp2(G(n, p)) ≤ 2 for the con-
jectured range of p). However, Ebsen, Mota and Schnitzer3 showed that it does not hold for
larger values of r.

Korándi, Mousset, Nenadov, Škorić and Sudakov [74] investigated the problem of cover-
ing random graphs by monochromatic cycles. They proved that for p ≥ n−1/r+ε, with high
probability, in any r-edge-colouring of G = G(n, p), there is a collection of at most O(r8 log r)

monochromatic cycles covering V (G). Lang and Lo [79] proved that for p ≥ n−1/2r, with
high probability in every r-edge-colouring of G = G(n, p), there is a collection of at most
O(r4 log r) monochromatic cycles partitioning V (G).

In a recent work, Bucić, Korándi and Sudakov [17] analysed the behaviour of tcr(G(n, p))

for every r ≥ 2. In Chapter 3, in a work developed together with Kohayakawa, Mota and
Schülke, we improve their results for r = 3. More precisely, we show the following:

Theorem II. If p = p(n) satisfies p ≫
(
logn
n

)1/6
, then with high probability we have

tc3
(
G(n, p)

)
≤ 3.

It is not hard to see that Theorem II cannot be improved by reducing the number of
trees unless p is very close to 1. Indeed, let {v1, v2, v3} be an independent set in G(n, p),
then colour all the edges incident on vi with the colour i, for i ∈ {1, 2, 3}, and colour all the
remaining edges of G(n, p) in any way. This colouring shows that with high probability we
have tc3(G(n, p)) ≥ 3, for p ≤ 1− O(n−1). However, we believe that the lower bound for p

in Theorem II can be improved to
(
logn
n

)1/4
.

3Their proof is described in [68].
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1. INTRODUCTION

As we mentioned earlier, Erdős, Gyárfás and Pyber [42] proved that for every r-edge-
colouring of Kn, it is possible to partition V (Kn) into a bounded number (depending on r) of
monochromatic paths, trees or even cycles. Grinshpun and Sárközy [53] extended this result
to more general sequences of graphs. Let F = {Fi : i ∈ N} be an infinite sequence of graphs
with |Fi| = i, for each i ∈ N. Given an r-colouring of the edges of the complete graph Kn,
a monochromatic F-tiling of size t is a collection of monochromatic vertex-disjoint graphs
G1, . . . , Gt, each of which is isomorphic to some member of F , and such that

V (Kn) = V (G1)∪̇ · · · ∪̇V (Gt).

Let us write τr(n,F) for the minimum t ∈ N such that for every r-edge-colouring of the
edges of Kn, there is a monochromatic F -tiling of size at most t. The r-colour tiling number
of F is defined as

τr(F) := sup
n∈N

τr(n,F).

Grinshpun and Sárközy [53] proved that for every positive integer ∆, there is a positive
number C such that if F is a sequence of graphs with maximum degree at most ∆, then
τ2(F) ≤ 2C∆log∆. In particular, the 2-colour tiling number of a sequence of bounded-
degree graphs is finite. They conjectured that the r-colour tiling number of a sequence of
bounded-degree graphs should also be finite and have at most an exponential growth with
∆. In Chapter 4, in a joint work with Corsten, we prove that the r-colour tiling number
of a sequence of bounded-degree graphs is indeed finite by establishing a triple-exponential
bound. More precisely, we prove the following.

Theorem III. There is an absolute constant K > 0 such that for all integers r,∆ ≥ 2, we
have

τr(F) ≤ exp2
(
rKr∆3)

,

for every sequence F = {Fi : i ∈ N} of graphs with |Fi| = i and ∆(Fi) ≤ ∆, for each i ∈ N.

The proof of Theorem III combines ideas from the absorption method as in the original
paper of Erdős, Gyárfás and Pyber [42] with some modern approaches involving the blow-up
lemma and the weak regularity lemma of Duke, Lefmann and Rödl [35].
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Chapter 2

Size-Ramsey Number of Powers of
Bounded Degree Trees

2.1 Introduction

Given graphs G and H and a positive integer s, we denote by G → (H)s the property that
any s-colouring of the edges of G contains a monochromatic copy of H. We are interested
in the problem proposed by Erdős, Faudree, Rousseau and Schelp [41] of determining the
minimum integer m for which there is a graph G with m edges such that property G → (H)s
holds. Formally, the s-colour size-Ramsey number r̂s(H) of a graph H is defined as follows:

r̂s(H) = min{e(G) : G → (H)s}.

Answering a question posed by Erdős [39], Beck [10] showed that r̂2(Pn) = O(n) by means
of a probabilistic proof. Alon and Chung [4] proved the same fact by explicitly constructing
a graph G with O(n) edges such that G → (Pn)2. In the last decades many successive
improvements were obtained in order to determine the size-Ramsey number of paths (see,
e.g., [10, 12, 34] for lower bounds, and [10, 33, 81, 34] for upper bounds). The best known
bounds for paths are 5n/2− 15/2 ≤ r̂2(Pn) ≤ 74n from [34]. For any s ≥ 2 colours, Dudek
and Prałat [34] and Krivelevich [78] proved that there are positive constants c and C such
that cs2n ≤ r̂s(Pn) ≤ Cs2(log s)n.

Moving away from paths, Beck [10] asked whether r̂2(H) is linear for any bounded
degree graph. This question was later answered negatively by Rödl and Szemerédi [94],
who constructed a family {Hn}n∈N of n-vertex graphs of maximum degree ∆(Hn) ≤ 3 such
that r̂2(Hn) = Ω(n log1/60 n). The current best upper bound for the size-Ramsey number
of graphs with bounded degree was obtained in [70] by Kohayakawa, Rödl, Schacht and

The work described in this chapter was developed in a joint project with Sören Berger, Yoshiharu
Kohayakawa, Giulia Satiko Maesaka, Taísa Martins, Guilherme Oliveira Mota and Olaf Parczyk.
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Szemerédi, who proved that for any positive integer ∆ there is a constant c such that, for
any graph H with n vertices and maximum degree ∆, we have

r̂2(H) ≤ cn2−1/∆ log1/∆ n.

For more results on the size-Ramsey number of bounded degree graphs see [30, 49, 59, 60,
66, 69].

Let us turn our attention to powers of bounded degree graphs. Let H be a graph with n

vertices and let k be a positive integer. The kth power Hk of H is the graph with vertex
set V (H) in which there is an edge between distinct vertices u and v if and only if u and v are
at distance at most k in H. Recently it was proved that the 2-colour size-Ramsey number
of powers of paths and cycles is linear [25]. This result was extended to any fixed number s
of colours in [57], i.e.,

r̂s(P
k
n ) = Ok,s(n) and r̂s(C

k
n) = Ok,s(n). (2.1)

The main result in this chapter (Theorem I) extends (2.1) to bounded powers of bounded
degree trees. We prove that for any positive integers k and s, the s-colour size-Ramsey
number of the kth power of any n-vertex bounded degree tree is linear in n.

Theorem I. For every positive integers k, ∆ and s, there exists C > 0 such that for any
n-vertex tree T with ∆(T ) ≤ ∆, we have r̂s(T

k) ≤ Cn.

We remark that Theorem I is equivalent to the following result for the ‘general’ or ‘off-
diagonal’ size-Ramsey number r̂(H1, . . . , Hs) = min{e(G) : G → (H1, . . . , Hs)}: if Hi = T k

i

for i = 1, . . . , s where T1, . . . , Ts are bounded degree trees, then r̂(H1, . . . , Hs) is linear
in max1≤i≤s v(Hi). To see this, it is sufficient to apply Theorem I to a tree containing the
disjoint union of T1, . . . , Ts.

The graph that we present to prove Theorem I does not depend on T , but only on ∆, k
and n. Moreover, our proof not only gives a monochromatic copy of T k for a given T , but a
monochromatic subgraph that contains a copy of the kth power of every n-vertex tree with
maximum degree at most ∆. That is, we prove the existence of so called ‘partition universal
graphs’ with Ok,∆,s(n) edges for the family of powers T k of n-vertex trees with ∆(T ) ≤ ∆.

Recently, Kamčev, Liebenau, Wood, and Yepremyan [64] proved, among other things,
that the 2-colour size-Ramsey number of an n-vertex graph with bounded degree and
bounded treewidth is O(n)1. This is equivalent to our result for s = 2. Indeed, any graph
with bounded treewidth and bounded maximum degree is contained in a suitable blow-up of
some bounded degree tree [32, 99] and a blow-up of a bounded degree tree is contained in the
power of another bounded degree tree. Conversely, bounded powers of bounded degree trees

1They in fact formulate this for the general 2-colour size-Ramsey number r̂(H1, H2).
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have bounded treewidth and bounded degree. Therefore, we obtain the following equivalent
version of Theorem I, which generalises the result from [64] and answers one of their main
open questions (Question 5.2 in [64]).

Corollary 2.1.1. For any positive integers k, ∆ and s and any n-vertex graph H with
treewidth k and ∆(H) ≤ ∆, we have

r̂s(H) = Ok,∆,s(n).

The proof of Theorem I follows the strategy developed in [57], proving the result by
induction on the number of colours s. Very roughly speaking, we start with a graph G

with suitable properties and, given any s-colouring of the edges of G (s ≥ 2), either we
obtain a monochromatic copy of the power of the desired tree in G, or we obtain a large
subgraph H of G that is coloured with at most s − 1 colours; moreover, the graph H that
we obtain is such that we can apply the induction hypothesis on it. Naturally, we design
the requirements on our graphs in such a way that this induction goes through. As it turns
out, the graph G will be a certain blow-up of a random-like graph. While this approach
seems uncomplicated upon first glance, the proof requires a variety of additional ideas and
technical details.

To implement the above strategy, we need, among other results, two new and key ingre-
dients which are interesting on their own: (i) a result that states that for any sufficiently
large graph G, either G contains a large expanding subgraph or there is a given number of
reasonably large disjoint subsets of V (G) without any edge between any two of them (see
Lemma 2.3.4); (ii) an embedding result that states that in order to embed a power T k of a
tree T in a certain blow-up of a graph G it is enough to find an embedding of an auxiliary
tree T ′ in G (see Lemma 2.3.6).

2.2 Auxiliary results

In this section we state a few results which will be needed in the proof of Theorem I. The
first lemma guarantees that, in a graph G that has edges between large subsets of vertices,
there exists a long “transversal” path along a constant number of large subsets of vertices
of G. Denote by eG(X, Y ) the number of edges between two disjoint sets X and Y in a
graph G.

Lemma 2.2.1 ([25, Lemma 3.5]). For every integer ℓ ≥ 1 and every γ > 0 there exists
d0 = 2 + 4/(γ(ℓ+ 1)) such that the following holds for any d ≥ d0. Let G be a graph on dn

vertices such that for every pair of disjoint sets X, Y ⊆ V (G) with |X|, |Y | ≥ γn we have
eG(X, Y ) > 0. Then for every family V1, . . . , Vℓ ⊆ V (G) of pairwise disjoint sets each of size

9



2.3. BIJUMBLEDNESS, EXPANSION AND EMBEDDING OF TREES

at least γdn, there is a path Pn = (x1, . . . , xn) in G with xi ∈ Vj for all 1 ≤ i ≤ n, where
j ≡ i (mod ℓ).

We will also use the classical Chernoff’s inequality and Kővári–Sós–Turán theorem.

Theorem 2.2.2 (Chernoff’s inequality). Let 0 < ε ≤ 3/2. If X is a sum of independent
Bernoulli random variables then

P(|X − E[X]| > εE[X]) ≤ 2 · e−(ε2/3)E[X] .

Theorem 2.2.3 (Kővári-Sós–Turán [77]). Let k ≥ 1 and let G be a bipartite graph with x

vertices in each vertex class. If G contains no copy of K2k,2k, then G has at most 4x2−1/(2k)

edges.

2.3 Bijumbledness, expansion and embedding of trees

In this section we provide the necessary tools to obtain the desired monochromatic embed-
ding of a power of a tree in the proof of Theorem I. We start by defining the expanding
property of a graph.

Property 2.3.1 (Expanding). A graph G is (n, a, b)-expanding if for all X ⊆ V (G) with
|X| ≤ a(n− 1), we have |NG(X)| ≥ b|X|.

Here NG(X) is the set of neighbours of X, i.e. all vertices in V (G) that share an edge with
some vertex from X. The following embedding result due to Friedman and Pippenger [49]
guarantees the existence of copies of bounded degree trees in expanding graphs.

Lemma 2.3.2. Let n and ∆ be positive integers and G a non-empty graph. If G is (n, 2,∆+

1)-expanding, then G contains any n-vertex tree with maximum degree ∆ as a subgraph.

Owing to Lemma 2.3.2, we are interested in graph properties that guarantee expansion.
One such property is bijumbledness, defined below.

Property 2.3.3 (Bijumbledness). A graph G on N vertices is (p, θ)-bijumbled if, for all
disjoint sets X and Y ⊆ V (G) with θ/p < |X| ≤ |Y | ≤ pN |X|, we have

∣∣eG(X, Y ) −
p|X||Y |

∣∣ ≤ θ
√
|X||Y |.

Note that bijumbledness immediately implies that

for all disjoint sets X, Y ⊆ V (G) with |X|, |Y | > θ/p we have eG(X, Y ) > 0. (2.2)
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Moreover, a simple averaging argument guarantees that in a (p, θ)-bijumbled graph G on N

vertices we have ∣∣∣∣e(G)− p

(
N

2

)∣∣∣∣ ≤ θN. (2.3)

We now state the first main novel ingredient in the proof of our main result (Theorem I).
The following lemma ensures that in a sufficiently large graph we get an expanding subgraph
with appropriate parameters or we get reasonably large disjoint subsets of vertices that span
no edges between them. This result was inspired by [88, Theorem 1.5]. Furthermore, we
remark that similar results have been proved in [91, 90].

Lemma 2.3.4. Let f ≥ 0, D ≥ 0, ℓ ≥ 2 and η > 0 be given and let A = (ℓ− 1)(D+1)(η+

f) + η.
If G is a graph on at least An vertices, then

(i ) there is a non-empty set Z ⊆ V (G) such that G[Z] is (n, f,D)-expanding, or

(ii ) there exist disjoint V1, . . . , Vℓ ⊆ V (G) such that |Vi| ≥ ηn for 1 ≤ i ≤ ℓ and
eG(Vi, Vj) = 0 for 1 ≤ i < j ≤ ℓ.

Proof. Let us assume that (i ) does not hold. Since G is not (n, f,D)-expanding, we can
take V1 ⊆ V (G) of maximum size satisfying that |V1| ≤ (η+ f)n and |NG(V1)| < D|V1|. We
claim that |V1| ≥ ηn. Assume, for the sake of contradiction that |V1| < ηn. Let

W1 = V (G) \ (V1 ∪NG(V1)).

Then |W1| > An − (D + 1)ηn > 0. Applying that (i ) does not hold, we get X ⊆ W1 such
that |X| ≤ f(n − 1) and |NG[W1](X)| < D|X|. Note that NG(X) ⊆ NG[W1](X) ∪ NG(V1).
Thus

|NG(X∪̇V1)| = |NG[W1](X) ∪NG(V1)| < D(|X|+ |V1|).

Also |X∪̇V1| ≤ (η + f)n, deriving a contradiction to the maximality of V1.
Let 1 ≤ k ≤ ℓ− 2 and suppose we have disjoint sets (V1, . . . , Vk) such that

(I) |Vi| ≥ ηn, for 1 ≤ i ≤ k;

(II) e(Vi, Vj) = 0, for 1 ≤ i < j ≤ k;

(III) |
⋃k

i=1(Vi ∪NG(Vi))| < k(D + 1)(η + f)n.

We can increase this sequence in the following way. Let Wk = V (G)\
⋃k

i=1(Vi∪NG(Vi)) and
note that

|Wk|
(III)
≥ An− (ℓ− 2)(D + 1)(η + f)n ≥ (D + 1)(η + f)n+ ηn > 0.
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Since (i ) does not hold, there exists Vk+1 ⊆ Wk of maximum size with |Vk+1| ≤ (η+f)n such
that |NG[Wk](Vk+1)| < D|Vk+1|. Note that eG(Vi, Vk+1) ≤ eG(Vi,Wk) = 0, for every 1 ≤ i ≤ k.
Therefore we have that (II) holds for the sequence (V1, . . . , Vk+1). Furthermore, note that

NG(Vk+1) ⊆
k⋃

i=1

NG(Vi) ∪NG[Wk](Vk+1) . (2.4)

This gives us (III) for the sequence (V1, . . . , Vk+1), since∣∣∣∣∣
k+1⋃
i=1

(Vi ∪NG(Vi))

∣∣∣∣∣ (2.4)
=

∣∣∣∣∣
k⋃

i=1

(Vi ∪NG(Vi)) ∪ Vk+1 ∪NG[Wk](Vk+1)

∣∣∣∣∣
< (k + 1)(D + 1)(η + f)n.

To see that (V1, . . . , Vk+1) satisfies (I), define

Wk+1 = V (G) \
k+1⋃
i=1

(Vi ∪NG(Vi))
(2.4)
= Wk \ (Vk+1 ∪NG[Wk](Vk+1)).

Assume that |Vk+1| < ηn and derive a contradiction as before.
Therefore, we generate a sequence (V1, . . . , Vℓ−1) with the properties required by (ii ). To

complete the sequence, note that (III) gives that |Wℓ−1| ≥ ηn and set Vℓ = Wℓ−1.

As a corollary of the previous lemma, we get the following lemma that says that suffi-
ciently large bijumbled graphs contain a non-empty expanding subgraph.

Lemma 2.3.5 (Bijumbledness implies expansion). Let f , θ, D and c ≥ 1 be positive numbers
with c ≥ 4(D+2)θ and a ≥ 2(D+1)f . If G is a (c/(an), θ)-bijumbled graph with an vertices,
then there exists a non-empty subgraph H of G that is (n, f,D)-expanding.

Proof. Let p = c/(an) and let G be a (p, θ)-bijumbled graph. Suppose for a contradiction
that no subgraph of G is (n, f,D)-expanding. We apply Lemma 2.3.4 with ℓ = 2 and
η = 2θa

c
. Note that since a ≥ 2(D+1)f and c ≥ 4(D+2)θ and from the choice of η we have

a ≥ (D + 1)f +
a

2
≥ (D + 1)f +

2(D + 2)θa

c
≥ (D + 1)f + (D + 2)η = (D + 1)(f + η) + η.

Then, we get two disjoint sets V1, V2 ⊆ V (G) with |V1| = |V2| = ηn > θ/p such that
eG(V1, V2) = 0. On the other hand, by (2.2), we have eG(V1, V2) > 0, a contradiction.
Therefore, there is some subgraph of G that is (n, f,D)-expanding.

The next lemma is crucial for embedding the desired power of a tree. Let G be a graph
and ℓ ≥ r be positive integers. An (ℓ, r)-blow-up of G is a graph obtained from G by
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replacing each vertex of G by a clique of size ℓ and for every edge of G arbitrarily adding a
complete bipartite graph Kr,r between the cliques corresponding to the vertices of this edge.

Lemma 2.3.6 (Embedding lemma for powers of trees). Given positive integers k and ∆,
there exists r0 such that the following holds for every n-vertex tree T with maximum degree
∆. There is a tree T ′ = T ′(T, k) on at most n+1 vertices and with maximum degree at most
∆2k such that for every graph J with T ′ ⊆ J and any (ℓ, r)-blow-up J ′ of J with ℓ ≥ r ≥ r0

we have T k ⊆ J ′.

Proof. Given positive integers k, ∆, take r0 = ∆4k. Let T be an n-vertex tree with maximum
degree ∆. Let x0 be any vertex in V (T ) and consider T as rooted at x0. For each vertex
v ∈ V (T ), let D(v) denote the set of descendants of v in T (including v itself). Let Di(v)

be the set of vertices u ∈ D(v) at distance at most i from v in T .
Let T ′ be a tree with vertex set consisting of a special vertex x∗ and the vertices x ∈ V (T )

such that the distance between x and x0 is a multiple of 2k. The edge set of T ′ consists of the
edge x∗x0 and the pairs of vertices x, y ∈ V (T ′) \ {x∗} for which x ∈ D2k(y) or y ∈ D2k(x).
That is,

V (T ′) = {x ∈ V (T ) : distT (x0, x) ≡ 0 (mod 2k)} ∪ {x∗}

E(T ′) =

{
xy ∈

(
V (T ′) \ {x∗}

2

)
: x ∈ D2k(y) or y ∈ D2k(x)

}
∪ {x∗x0}.

In particular, note that ∆(T ′) ≤ ∆2k and |V (T ′)| ≤ n + 1. Let us consider T ′ as a tree
rooted at x∗.

Now suppose that J is a graph such that T ′ ⊆ J and J ′ is an (ℓ, r)-blow-up of J with
ℓ ≥ r ≥ r0. Our goal is to show that T k ⊆ J ′. First, since J ′ is an (ℓ, r)-blow-up of J ,
there is a collection {K(x) : x ∈ V (J)} of disjoint ℓ-cliques in J ′ such that for each edge
xy ∈ E(J), there is a copy of Kr,r between the vertices of K(x) and K(y). Let us denote
by K(x, y) such copy of Kr,r.

For each x ∈ V (T ′) \ {x∗}, let D+(x) = Dk−1(x) and D−(x) = D2k−1(x) \Dk−1(x). In
order to fix the notation, it helps to think of D+(x) and D−(x) as the upper and lower half
of close descendants of x, respectively. We denote by x+ the parent of x in T ′. Suppose
that there exists an injective map φ : V (T ) → V (J ′) such that for every x ∈ V (T ′) \ {x∗},
we have

(1) φ(D+(x)) ⊆ K(x, x+) ∩K(x+);

(2) φ(D−(x)) ⊆ K(x, x+) ∩K(x).

Then we claim that such map is in fact an embedding of T k into J ′. Figure 2.1 should help
to visualize the concepts developed so far.
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x0
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x3

x6

x9
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x15

x18

x20

x7

x10

x4

x2

x5

x8

x11

x13

x16

x19

x14

x17

D+(x0)

D−(x0)

D+(x9) D+(x10)

D+(x11)

D−(x9)

D+(x20)

D−(x11)

(a) Tree T .

x⋆

x0

x9

x20

x10 x11

(b) Corresponding T ′.

D+(x0)

D−(x0)

D+(x9) D+(x11)D+(x10)

D−(x9) D−(x10) D−(x11)

D+(x20)

D−(x20)

K(x⋆)

K(x0)

K(x9)

K(x10) K(x11)

K(x20)

(c) Embedding T k into an (ℓ, r)-blow-up of T ′.

Figure 2.1: Illustration of the concepts and notation used throughout the proof of
Lemma 2.3.6 when ∆ = 3 and k = 2.
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Claim 2.3.7. If φ : V (T ) → V (J ′) is an injective map such that for all x ∈ V (T ′) \ {x∗},
the properties (1) and (2) hold, then φ is an embedding of T k into J ′.

Proof. We want to show that if u and v are distinct vertices in T at distance at most k, then
φ(u)φ(v) is an edge in J ′. Let ũ and ṽ be vertices in V (T ′) \ {x∗} with u ∈ D2k−1(ũ) and
v ∈ D2k−1(ṽ). If ũ = ṽ, then by properties (1) and (2), we have φ(u) and φ(v) adjacent in
J ′, once all the vertices in φ(D2k−1(ũ)) are adjacent in J ′ either by edges from K(ũ), K(ũ+)

or K(ũ, ũ+). If ũ = ṽ+, then we must have u ∈ D−(ũ) and v ∈ D+(ṽ) and properties (1)
and (2) give us φ(u), φ(v) ∈ K(ũ). Analogously, if ṽ = ũ+, then v ∈ D−(ṽ) and u ∈ D+(ũ)

and properties (1) and (2) imply that φ(u), φ(v) ∈ K(ṽ). If ũ+ = ṽ+ (with ũ ̸= ṽ), then we
have u ∈ D+(ũ) and v ∈ D+(ṽ) and property (1) give us φ(u), φ(v) ∈ K(ũ+).

Therefore we may assume that ũ and ṽ are at distance at least 2 in T ′ and do not share
a parent. But this implies that

min{distT (x, y) : x ∈ D2k−1(ũ), y ∈ D2k−1(ṽ)} ≥ 2k + 1,

contradicting the fact that u and v are at distance at most k in T . □

We conclude the proof by showing that such a map exists.

Claim 2.3.8. There is an injective map φ : V (T ) → V (J ′) for which (1) and (2) hold for
every x ∈ V (T ′) \ {x∗}.

Proof. We just need to show that for every x ∈ V (T ′), there is enough room in K(x) and
in K(x, x+) to guarantee that (1) and (2) hold. In order to do so, K(x) should be large
enough to accommodate the set

D−(x) ∪
⋃

y∈V (T ′)
y+=x

D+(y). (2.5)

Since T ′ has maximum degree at most ∆2k and T has maximum degree ∆, we have that the
set in (2.5) has at most ∆4k vertices. And since |K(x)| = ℓ ≥ r0 = ∆4k, K(x) is large enough
to accommodate the set in (2.5). Finally, since |K(x, x+) ∩K(x)| = |K(x, x+) ∩K(x+)| =
r ≥ r0 = ∆4k the set K(x, x+) is also large enough to accommodate D−(x) or D+(x) as in
properties (1) and (2). □

We end this section discussing a graph property that needs to be inherited by some
subgraphs when running the induction in the proof of Theorem I.

Definition 2.3.9. For positive numbers n, a, b, c, ℓ and θ, let Pn(a, b, c, ℓ, θ) denote the
class of all graphs G with the following properties, where p = c/(an).
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(i ) |V (G)| = an,

(ii ) ∆(G) ≤ b,

(iii ) G has no cycles of length at most 2ℓ,

(iv ) G is (p, θ)-bijumbled.

Only mild conditions on a, b, c, ℓ and θ are necessary to guarantee the existence of a
graph in Pn(a, b, c, ℓ, θ) for sufficiently large n. These conditions can be seen in (i )–(iii )
in Definition 2.3.10 below. In order to keep the induction going in our main proof we also
need a condition relating k and ∆, which represents, respectively, the power of the tree T

we want to embed and the maximum degree of T (see (iv ) in the next definition).

Definition 2.3.10. A 7-tuple (a, b, c, ℓ, θ,∆, k) is good if

(i ) a ≥ 3,

(ii ) c ≥ θℓ,

(iii ) b ≥ 9c,

(iv ) ℓ ≥ 21∆2k.

Next we prove that conditions (i )–(iii ) in Definition 2.3.10 together with θ ≥ 32
√
c are

enough to guarantee that there are graphs in Pn(a, b, c, ℓ, θ) as long as n is large enough. We
remark that next lemma is stated for a good 7-tuple, but condition (iv ) of Definition 2.3.10
is not necessary and, therefore, also ∆ and k are irrelevant.

Lemma 2.3.11. If (a, b, c, ℓ, θ,∆, k) is a good 7-tuple with θ ≥ 32
√
c, then for sufficiently

large n the family Pn(a, b, c, ℓ, θ) is non-empty.

Proof. Let (a, b, c, ℓ, θ,∆, k) be a good 7-tuple with θ ≥ 32
√
c and let n be sufficiently large.

Put N = an and let G∗ = G(3N, p) be the binomial random graph with 3N vertices and
edge probability p = c/N . From Chernoff’s inequality (Theorem 2.2.2) we know that almost
surely

e(G∗) ≤ 2p

(
3N

2

)
≤ 9cN. (2.6)

From [60, Lemma 8], we know that almost surely G∗ is (p, e2
√
6p(3N))-bijumbled, i.e. the

following holds almost surely: for all disjoint sets X and Y ⊆ V (G∗) with e2
√
18N/

√
p <

|X| ≤ |Y | ≤ p(3N)|X|, we have∣∣eG∗(X, Y )− p|X||Y |
∣∣ ≤ (e2

√
6)
√

p(3N)|X||Y |. (2.7)

16



2.4. PROOF OF THEOREM I

The expected number of cycles of length at most 2ℓ in G∗ is given by E(C≤2ℓ) =∑2ℓ
i=3 E(Ci), where Ci is the number of cycles of length i. Then,

E(C≤2ℓ) =
2ℓ∑
i=3

(
3an

i

)
(i− 1)!

2
pi ≤

2ℓ∑
i=3

(3c)i ≤ 2ℓ(3c)2ℓ.

Then, from Markov’s inequality, we have

P
(
C≤2ℓ ≥ 4ℓ(3c)2ℓ

)
≤ 1

2
. (2.8)

Since (2.6) and (2.7) hold almost surely and the probability in (2.8) is at most 1/2, for
sufficiently large n there exists a (p, e2

√
18c)-bijumbled graph G′ with 3N vertices that

contains less than 4ℓ(3c)2ℓ cycles of length at most 2ℓ and e(G′) ≤ 2p
(
3N
2

)
≤ 9cN . Then, by

removing 4ℓ(3c)2ℓ vertices we obtain a graph G′′ with no such cycles such that

|V (G′′)| = 3an− 4ℓ(3c)2ℓ ≥ 2an and e(G′′) ≤ 9cN.

To obtain the desired graph G in Pn(a, b, c, ℓ, θ), we repeatedly remove vertices of highest
degree in G′′ until N vertices are left, obtaining a subgraph G ⊆ G′′ such that ∆(G) ≤
9c ≤ b, as otherwise we would have deleted more than e(G′′) edges. Note that deleting
vertices preserves the bijumbledness. Therefore, for all disjoint sets X and Y ⊆ V (G) with
e2
√
18N/

√
p < |X| ≤ |Y | ≤ p(3N)|X| we have∣∣eG(X, Y )− p|X||Y |

∣∣ ≤ (e2
√
6)
√

p(3N)|X||Y | ≤ (32
√

pN)
√

|X||Y | ≤ θ
√
|X||Y |. (2.9)

We obtained a graph G on N vertices and maximum degree ∆(G) ≤ b such that G

contains no cycles of length at most 2ℓ and is (p, θ)-bijumbled, for p = c/N . Therefore, the
proof of the lemma is complete.

2.4 Proof of Theorem I

We derive Theorem I from Proposition 2.4.1 below. Before continuing, given an integer ℓ ≥ 1,
let us define what we mean by a sheared complete blow-up H{ℓ} of a graph H: this is any
graph obtained by replacing each vertex v in V (H) by a complete graph C(v) with ℓ vertices,
and by adding all edges but a perfect matching between C(u) and C(v), for each uv ∈ E(H).
We also define the complete blow-up H(ℓ) of a graph H analogously, but by adding all the
edges between C(u) and C(v), for each uv ∈ E(H).

Proposition 2.4.1. For all integers k ≥ 1, ∆ ≥ 2, and s ≥ 1 there exists rs and a good 7-
tuple (as, bs, cs, ℓs, θs,∆, k) with θs ≥ 32

√
cs for which the following holds. If n is sufficiently
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large and G ∈ Pn(as, bs, cs, ℓs, θs) then, for any tree T on n vertices with ∆(T ) ≤ ∆, we have

Grs{ℓs} → (T k)s.

Theorem I follows from Proposition 2.4.1 applied to a certain subgraph of a random
graph.

Proof of Theorem I. Fix positive integers k, ∆ and s and let T be an n-vertex tree with
maximum degree ∆. Proposition 2.4.1 applied with parameters k, ∆ and s gives rs and a
good 7-tuple (as, bs, cs, ℓs, θs,∆, k) with θs ≥ 32

√
cs.

Let n be sufficiently large. By Lemma 2.3.11, since θs ≥ 32
√
cs, there exists a graph G ∈

Pn(as, bs, cs, ℓs, θs). Let χ be an arbitrary s-colouring of E(Grs{ℓs}). Then, Proposition 2.4.1
gives that Grs{ℓs} → (T k)s. Since |V (G)| = asn, the maximum degree of G is bounded by
the constant bs, and since rs and ℓs are constants, we have e(Grs{ℓs}) = Ok,∆,s(n), which
concludes the proof of Theorem I.

The proof of Proposition 2.4.1 follows by induction in the number of colours. Before we
give this proof, let us state the results for the base case and the induction step.

Lemma 2.4.2 (Base Case). For all integers h ≥ 1, k ≥ 1 and ∆ ≥ 2 there is an integer r

and a good 7-tuple (a, b, c, ℓ, θ,∆, k) with θ ≥ 2h−132
√
c such that if n is sufficiently large,

then the following holds for any G ∈ Pn(a, b, c, ℓ, θ). For any n-vertex tree T with ∆(T ) ≤ ∆,
the graph Gr{ℓ} contains a copy of T k.

Lemma 2.4.3 (Induction Step). For any positive integers ∆ ≥ 2, s ≥ 2, k, r, h ≥ 1

and any good 7-tuple (a, b, c, ℓ, θ,∆, k) with θ ≥ 2h32
√
c, there is a positive integer r′ and

a good 7-tuple (a′, b′, c′, ℓ′, θ′,∆, k) with θ′ ≥ 2h−132
√
c′ such that the following holds. If n

is sufficiently large then for any graph G ∈ Pn(a
′, b′, c′, ℓ′, θ′) and any s-colouring χ of

E(Gr′{ℓ′})

(i ) there is a monochromatic copy of T k in Gr′{ℓ′} for any n-vertex tree T with ∆(T ) ≤ ∆,
or

(ii ) there is H ∈ Pn(a, b, c, ℓ, θ) such that Hr{ℓ} ⊆ Gr′{ℓ′} and Hr{ℓ} is coloured with at
most s− 1 colours under χ.

Now we are ready to prove Proposition 2.4.1.

Proof of Proposition 2.4.1. Fix integers k ≥ 1, ∆ ≥ 2 and s ≥ 1 and define hi = s − i for
1 ≤ i ≤ s. Let r1 and a good 7-tuple (a1, b1, c1, ℓ1, θ1,∆, k) with θ1 ≥ 2h132

√
c1 be given by

Lemma 2.4.2 applied with s, k and ∆.
We will prove the proposition by induction on the number of colours i ∈ {1, . . . , s} with

the additional property that if the colouring has i colours then θi ≥ 2hi32
√
ci.
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2.4. PROOF OF THEOREM I

Notice that Lemma 2.4.2 implies that for sufficiently large n, if G ∈ Pn(a1, b1, c1, ℓ1, θ1),
then Gr1{ℓ1} → (T k)1. Therefore, since θ1 ≥ 2h132

√
c1, if i = 1, we are done.

Assume 2 ≤ i ≤ s and suppose the statement holds for i− 1 colours with the additional
property that θi−1 ≥ 2hi−132

√
ci−1, where ri−1 and a good 7-tuple (ai−1, bi−1, ci−1, ℓi−1, θi−1,∆, k)

are given by the induction hypothesis. Therefore, for any tree T on n vertices with ∆(T ) ≤
∆, we know that for a sufficiently large n

Hri−1{ℓi−1} → (T k)i−1 for any H ∈ Pn(ai−1, bs−1, ci−1, ℓi−1, θi−1). (2.10)

Note that since i ≤ s, we have hi−1 = s−(i−1) ≥ 1. Then, since θi−1 ≥ 2hi−132
√
ci−1, we

can apply Lemma 2.4.3 with parameters ∆, s, k, ri−1, hi−1 and (ai−1, bi−1, ci−1, ℓi−1, θi−1,∆, k),
obtaining ri and (ai, bi, ci, ℓi, θi,∆, k) with θi ≥ 2hi32

√
ci.

Let G ∈ Pn(ai, bi, ci, ℓi, θi) and let n be sufficiently large. Now let χ be an arbitrary i-
colouring of E(Gri{ℓi}). From Lemma 2.4.3, we conclude that either (i ) there is a monochro-
matic copy of T k in Gri{ℓi} for any tree T on n vertices with ∆(T ) ≤ ∆, in which case the
proof is finished, or (ii ) there exists a graph H ∈ Pn(ai−1, bi−1, ci−1, ℓi−1, θi−1) such that
Hri−1{ℓi−1} ⊆ Gri{ℓi} and Hri−1{ℓi−1} is coloured with at most s − 1 colours under χ. In
case (ii ), the induction hypothesis (2.10) implies that we find the desired monochromatic
copy of T k in Hri−1{ℓi−1} ⊆ Gri{ℓi}.

The proof of Lemma 2.4.2 follows by proving that for a good 7-tuple (a, b, c, ℓ, θ,∆, k)

with θ ≥ 2h−132
√
c, large graphs G in Pn(a, b, c, ℓ, θ) are expanding (using Lemma 2.3.5).

Then, we use Lemma 2.3.2 to conclude that G contains the desired tree T . After this step
we greedily find an embedding of T k in Gk{ℓ}.

Proof of the base case (Lemma 2.4.2). Let h ≥ 1, k ≥ 1 and ∆ ≥ 2 be integers. Let

r = k, ℓ = 21∆2k, θ = 4h256ℓ, c = θℓ, b = 9c

and put D = ∆+ 1. Note that θ ≥ 2h−132
√
c and let

a ≥ 4(D + 1).

Since ℓ ≥ 4(∆ + 3), we have c ≥ 4(D + 2)θ. From the lower bounds on c and a we know
that we can use the conclusion of Lemma 2.3.5 applying it with f = 2, θ, D = ∆+1 and c.

Note that from our choice of constants, (a, b, c, ℓ, θ,∆, k) is a good tuple. Let n be
sufficiently large and let T be a tree on n vertices with ∆(T ) ≤ ∆. Let G ∈ Pn(a, b, c, ℓ, θ).
From Lemma 2.3.5 we know that G has an (n, 2,∆+1)-expanding subgraph and, therefore,
from Lemma 2.3.2 we conclude that G contains a copy of T . Clearly, the graph Gk contains
a copy of T k. It remains to prove that the graph Gk{ℓ} also contains a copy of T k.
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Let {v1, . . . , vn} be the vertices of Tn and denote by Tj the subgraph of T induced
by {v1, . . . , vj}. Given a vertex v ∈ V (G), let C(v) denote the ℓ-clique in Gk{ℓ} that
corresponds to v. Suppose that for some 1 ≤ j < k we have embedded T k

j in Gk{ℓ} where,
for each 1 ≤ i ≤ j, the vertex vi was mapped to some wi ∈ C(vi).

By the definition of Gk{ℓ}, every neighbour v of vj+1 in Gk is adjacent to all but one
vertex of C(vj+1). Therefore, since ∆(T k) ≤ ∆k and |C(vj+1)| = ℓ ≥ ∆k + 1, we may thus
find a vertex wj+1 ∈ C(vj+1) such that wj+1 is adjacent in Gk{ℓ} to every wi with 1 ≤ i ≤ j

such that vivj+1 ∈ E(T k
j+1). From that we obtain a copy of T k

j+1 in Gk{ℓ} where wi ∈ C(vi)

for 1 ≤ i ≤ j +1. Therefore, starting with any vertex w1 in C(v1), we may obtain a copy of
T k in Gk{ℓ} inductively, which proves the lemma.

The core of the proof of Theorem I is the induction step (Lemma 2.4.3). We start by
presenting a sketch of its proof.

Sketch of the induction step (Lemma 2.4.3). We start by fixing suitable constants r′, a′, b′,
c′, ℓ′ and θ′. Let n be sufficiently large and let G ∈ Pn(a

′, b′, c′, ℓ′, θ′) be given. Consider
an arbitrary colouring χ of the edges of a sheared complete blow-up Gr′{ℓ′} of Gr′ with s

colours. We shall prove that either there is a monochromatic copy of T k in Gr′{ℓ′}, or
there is a graph H ∈ Pn(a, b, c, ℓ, θ) such that a sheared complete blow-up Hr{ℓ} of Hr is a
subgraph of Gr′{ℓ′} and this copy of Hr{ℓ} is coloured with at most s− 1 colours under χ.

First, note that, by Ramsey’s theorem, if ℓ′ is large then each ℓ′-clique C(v) of Gr′{ℓ′}
contains a large monochromatic clique. Let us say that blue is the most common colour of
these monochromatic cliques. Let these blue cliques be C ′(v) ⊆ C(v). Then we consider a
graph J ⊆ Gr′ induced by the vertices v corresponding to the blue cliques C ′(v) and having
only the edges {u, v} such that there is a blue copy of a large complete bipartite graph
under χ in the bipartite graph induced between the blue cliques C ′(u) and C ′(v) in Gr′{ℓ′}.

Then, by Lemma 2.3.4 applied to J , either there is a set ∅ ̸= Z ⊆ V (J) such that J [Z]

is expanding, or there are large disjoint sets V1, . . . , Vℓ with no edges between them in J .
In the first case, Lemma 2.3.6 guarantees that there is a tree T ′ such that, if T ′ ⊆ J [Z],
then there is a blue copy of T k in Gr′{ℓ′}. To prove that T ′ ⊆ J [Z], we recall that J [Z] is
expanding and use Lemma 2.3.2. This finishes the proof of the first case.

Now let us consider the second case, in which there are large disjoint sets V1, . . . , Vℓ

with no edges between them in J . The idea is to obtain a graph H ∈ Pn(a, b, c, ℓ, θ) such
that Hr{ℓ} ⊆ Gr′{ℓ′} and, moreover, Hr{ℓ} does not have any blue edge. For that we
first obtain a path Q in G with vertices (x1, . . . , x2aℓn) such that xi ∈ Vj for all i where
i ≡ j mod ℓ. Then we partition Q into 2an paths Q1, . . . , Q2an with ℓ vertices each, and
consider an auxiliary graph H ′ on V (H ′) = {Q1, . . . , Q2an} with QiQj ∈ E(H ′) if and only
EG(V (Qi), V (Qj)) ̸= ∅. To ensure that H ′ inherits properties from G we use that there can
bet at most one edge between Qi and Qj in G, because there are no cycles of length less
than 2ℓ in G.

20



2.4. PROOF OF THEOREM I

We obtain a subgraph H ′′ ⊆ H ′ by choosing edges of H ′ uniformly at random with a
suitable probability p. Then, successively removing vertices of high degree, we obtain a
graph H ⊆ H ′′ with H ∈ Pn(a, b, c, ℓ, θ). It now remains to find a copy of Hr{ℓ} in Gr′{ℓ′}
with no blue edges. To do so, we first observe that the paths Qi ∈ V (H ′) give rise to
ℓ-cliques in Gr′ (r′ ≥ ℓ). One can then prove that there is a copy of Hr{ℓ} in Gr′ that avoids
the edges of J . By applying the Lovász local lemma we can further deduce that there is a
copy of Hr{ℓ} in Gr′{ℓ′} with no blue edges.

Proof of the induction step (Lemma 2.4.3). We start by fixing positive integers ∆ ≥ 2, s ≥
2, k, r, h and a good 7-tuple (a, b, c, ℓ, θ,∆, k) with

θ ≥ 2h32
√
c.

Recall that from the definition of good 7-tuple, we have

b ≥ 9c.

Let d0 be obtained from Lemma 2.2.1 applied with ℓ and γ = 1/(2ℓ) (note that d0 ≤ 10).
Further let

a′′ = ℓ(∆2k + 2)(2a · d0 + 2).

Notice that a′′ is an upper bound on the value A given by Lemma 2.3.4 applied with f = 2,
D = ∆2k + 1, ℓ and η = 2a · d0.

Let r0 be given by Lemma 2.3.6 on input ∆ and k. We may assume r0 is even. Further-
more, let

t = max{r0,
(
40(ℓbr+1 + ℓ)

)r0} and ℓ′ = max{4sℓ2, rs(t)},

where rs(t) = Rs(Kt) denotes the s-colour Ramsey number for cliques of order t. Let a′ = ℓ′a

and note that a′/s ≥ 2a′′ because ℓ ≥ 21∆2k. Define constants c∗, c′ and r′ as follows.

c∗ = 2ℓ′c, c′ =
ℓ′

2ℓ2
c∗ =

ℓ′2

ℓ2
c, r′ = ℓr. (2.11)

Put
b′ = 9c′ and θ′ =

c∗

4cℓ
θ =

ℓ′

2ℓ
θ

Claim 2.4.4. (a′, b′, c′, ℓ′, θ′,∆, k) is a good 7-tuple and θ′ ≥ 2h−132
√
c′.

Proof. We have to check all conditions in Definition 2.3.10. Clearly a′ ≥ 3, b′ ≥ 9c′ and
ℓ′ ≥ ℓ ≥ 21∆2k. Below we prove that the other conditions hold
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• c′ ≥ θ′ℓ′:

c′ =
ℓ′2

ℓ2
c ≥ ℓ′2

ℓ
θ = 2θ′ℓ′ > θ′ℓ′.

• θ′ ≥ 2h−132
√
c′:

θ′ =
ℓ′

2ℓ
θ ≥ ℓ′

2ℓ
2h32

√
c = 2h−132

√
c′.

□

Let G be a graph in Pn(a
′, b′, c′, ℓ′, θ′). Assume

NG = a′n and pG = c′/NG

and let T be an arbitrary tree with n vertices and maximum degree ∆ and consider an
arbitrary s-colouring χ : E(Gr′{ℓ′}) → [s] of the edges of Gr′{ℓ′}. We shall prove that either
there is a monochromatic copy of T k in Gr′{ℓ′}, or there is a graph H ∈ Pn(a, b, c, ℓ, θ)

such that a sheared complete blow-up Hr{ℓ} of Hr is a subgraph of Gr′{ℓ′} and this copy
of Hr{ℓ} is coloured with at most s− 1 colours under χ.

By Ramsey’s theorem (see, for example, [29]), since ℓ′ ≥ rs(t), each ℓ′-clique C(w)

in Gr′{ℓ′} (for w ∈ V (G)) contains a monochromatic clique of size at least t. Without
loss of generality, let us assume that most of those monochromatic cliques are blue. Let
W ⊆ V (G) be the set of vertices w such that there is a blue t-clique C ′(w) ⊆ C(w). We
have

|W | ≥ |V (G)|
s

=
a′n

s
≥ 2a′′n. (2.12)

Define J as the subgraph of Gr′ with vertex set W and edge set

E(J) =
{
uv ∈ E(Gr′ [W ]) : there is a blue copy of Kr0,r0 in Gr′{ℓ′}[C ′(u), C ′(v)]

}
.

That is, J is the subgraph of Gr′ induced by W and the edges uv such that there is a blue
copy of Kr0,r0 under χ in the bipartite graph induced by Gr′{ℓ′} between the vertex sets of
the blue cliques C ′(u) and C ′(v).

We now apply Lemma 2.3.4 with f = 2, D = ∆2k + 1, ℓ, and η = 2a · d0 to the graph
J (notice that |V (J)| ≥ 2a′′n is large enough so we can apply Lemma 2.3.4), splitting the
proof into two cases:

(i ) there is ∅ ̸= Z ⊆ V (J) such that J [Z] is (n+ 1, 2,∆2k + 1)-expanding,

(ii ) there exist V1, . . . , Vℓ ⊆ V (J) such that |Vi| ≥ 2ad0n for 1 ≤ i ≤ ℓ and J [Vi, Vj] is
empty for any 1 ≤ i < j ≤ ℓ.

In case J [Z] is (n + 1, 2,∆2k + 1)-expanding, we first notice that Lemma 2.3.6 applied
to the graph J [Z] implies the existence of a tree T ′ = T ′(T,∆, k) of maximum degree at
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most ∆2k with at most n + 1 vertices such that if J [Z] contains T ′, then T k ⊆ J ′ for any
(r0, r0)-blow-up J ′ of J . But since J [Z] is (n+1, 2,∆2k+1)-expanding, Lemma 2.3.2 implies
that J [Z] contains a copy of T ′. Therefore, the graph Gr′{ℓ′} contains a blue copy of T k, as
we can consider J ′ as the subgraph of Gr′{ℓ′} containing only edges inside the blue cliques
C ′(u) (which have size t ≥ r0) and the edges of the complete blue bipartite graphs Kr0,r0

between the blue cliques C ′(u). This finishes the proof of the first case.
We may now assume that there are subsets V1, . . . , Vℓ ⊆ V (J) with |Vi| ≥ 2ad0n for

1 ≤ i ≤ ℓ and J [Vi, Vj] is empty for any 1 ≤ i < j ≤ ℓ. We want to obtain a graph
H ∈ Pn(a, b, c, ℓ, θ) such that Hr{ℓ} ⊆ Gr′{ℓ′} and contains no blue edges.

Let J ′ = J [V1∪· · ·∪Vℓ], G′ = G[V1∪· · ·∪Vℓ] and note that |V (G′)| = |V (J ′)| ≥ d0 ·2aℓn,
where we recall that d0 is the constant obtained by applying Lemma 2.2.1 with ℓ and
γ = 1/(2ℓ). We want to use the assertion of Lemma 2.2.1 to obtain a transversal path of
length 2aℓn in G′ and so we have to check the conditions adjusted to this parameter.

First note, that we have |Vi| ≥ 2ad0n ≥ γd0 ·2aℓn for 1 ≤ i ≤ ℓ. Moreover, since G′ is an
induced subgraph of G and G ∈ Pn(a

′, b′, c′, ℓ, θ′), we know by (2.2) that for all X, Y ⊆ V (G′)

with |X|, |Y | > θ′a′n/c′ we have eG′(X, Y ) > 0. Observe that θ′a′n/c′ < an = γ · 2aℓn once
a′ = ℓ′a and c′ > θ′ℓ′. Therefore, we may use Lemma 2.2.1 to conclude that G′ contains a
path P2aℓn = (x1, . . . , x2aℓn) with xi ∈ Vj for all i, where j ≡ i (mod ℓ).

We split the obtained path P2aℓn of G′ into consecutive paths Q1, . . . , Q2an each on ℓ

vertices. More precisely, we let Qi = (x(i−1)ℓ+1, . . . , xiℓ) for i = 1, . . . , 2an. The following
auxiliary graph is the base of our desired graph H ∈ Pn(a, b, c, ℓ, θ).

H ′ is the graph on V (H ′) = {Q1, . . . , Q2an} such that QiQj ∈ E(H ′) if and only if

there is an edge in G between the vertex sets of Qi and Qj.

Claim 2.4.5. H ′ ∈ Pn(2a, ℓb
′, c∗, ℓ, ℓθ′).

Proof. We verify the conditions of Definition 2.3.9. Since H ′ has 2an vertices, condition (i )
clearly holds. Since ∆(G) ≤ b′ and for any Qi ∈ V (H ′) we have |Qi| = ℓ (as a subset of
V (G)), there are at most ℓb′ edges in G with an endpoint in Qi. Then, ∆(H ′) ≤ ℓb′.

For condition (iii ), recall that any vertex of H ′ corresponds to a path on ℓ vertices in G.
Thus, a cycle of length at most 2ℓ in H ′ implies the existence of a cycle of length at most
2ℓ2 in G. Since 2ℓ′ ≥ 2ℓ2 and G has no cycles of length at most 2ℓ′, we conclude that H ′

contains no cycle of length at most 2ℓ, which verifies condition (iii ).
Let NH′ = 2an and

pH′ =
c∗

NH′
=

c∗

2an
. (2.13)

Let us verify condition (iv ), i.e., we shall prove that H ′ is (pH′ , ℓθ′)-bijumbled.
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Consider arbitrary sets X and Y of V (H ′) with ℓθ′/pH′ < |X| ≤ |Y | ≤ pH′NH′|X|. For
simplicity, we may assume that X = {Q1, . . . , Qx} and Y = {Qx+1, . . . , Qx+y}. Let XG =⋃x

j=1Qj ⊆ V (G) and YG =
⋃x+y

j=x+1 Qj ⊆ V (G). Note that |XG| = ℓ|X| and |YG| = ℓ|Y |. As
there are no cycles of length smaller than 2ℓ in G, we only have at most one edge between
the vertex sets of Qi and Qj. Therefore we have

eH′(X, Y ) = eG(XG, YG). (2.14)

We shall prove that |eH′(X, Y )− pH′ |X||Y || ≤ ℓθ′
√

|X||Y |. From the choice of c′, we have

pH′|X||Y | = c∗

2an
|X||Y | = c′

a′n
ℓ|X|ℓ|Y | = c′

a′n
|XG||YG| = pG|XG||YG|. (2.15)

From the choice of θ′, c′, and pH′ , since ℓθ′/pH′ < |X| ≤ |Y | ≤ pH′NH′|X|, we obtain

θ′

pG
< |XG| ≤ |YG| ≤ pGNG|XG|.

Combining (2.15) with (2.14) and the fact that G is (pG, θ
′)-bijumbled, we get that

|eH′(X, Y )−pH′ |X||Y || = |eG(XG, YG)−pG|XG||YG|| ≤ θ′
√

|XG||YG| = ℓθ′
√

|X||Y |. (2.16)

Therefore, H ′ is (pH′ , ℓθ′)-bijumbled, which verifies condition (iv ). □

The parameters for Pn(2a, ℓb
′, c∗, ℓ, ℓθ′) are tightly fitted such that we can find the fol-

lowing subgraph of H ′.

Claim 2.4.6. There exists H ⊆ H ′ such that H ∈ Pn(a, b, c, ℓ, θ).

Proof. We first obtain H ′′ ⊆ H ′ by picking each edge of H ′ with probability

p =
2c

c∗
=

1

ℓ′

independently at random. Note that p ≤ 1/2.
From (2.3), we get

e(H ′) ≤ pH′

(
2an

2

)
+ ℓθ′2an ≤ (c∗ + 2ℓθ′)an ≤ (c∗ + 2ℓ

c′

ℓ′
)an ≤ 2c∗an

From Chernoff’s inequality, we then know that almost surely we have

e(H ′′) ≤ 2p · e(H ′) ≤ 2 ·
(
2c

c∗

)
· 2c∗an ≤ 8acn ≤ abn. (2.17)
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Let NH′′ = 2an and
pH′′ = p · pH′ =

c

an
.

We shall prove that H ′′ is (pH′′ , θ)-bijumbled almost surely. For that, we will first prove
by using Chernoff’s inequality (Theorem 2.2.2) that, for any arbitrary sets X and Y of
V (H ′) with θ/pH′′ < |X| ≤ |Y | ≤ pH′NH′ |X| we have

|eH′′(X, Y )− p · eH′(X, Y )| ≤ θ

2

√
|X||Y |. (2.18)

Note that for such sets X and Y , since |X| > θ/pH′′ ≥ ℓθ′/pH′ , we can use (2.16).

Since |X|, |Y | > θ/pH′′ , we have
√
|X||Y | > θan/c. From

√
|X||Y | > θan/c, we obtain

that ℓ′θ <
2ℓ′c

√
|X||Y |

2an
from which we can conclude that 2ℓθ′ < pH′

√
|X||Y |. Thus, we get

ℓθ′
√
|X||Y | < pH′|X||Y |/2. Therefore, combining this with (2.16) we have

pH′ |X||Y |
2

< eH′(X, Y ) < 2pH′ |X||Y |. (2.19)

Let ε = θ
√
|X||Y |/(2p·eH′(X, Y )) and note that from (2.19) we have ε < 1. Since θ ≥ 10

√
c,

also from (2.19) we obtain

ε2p · eH′(X, Y )

3
=

|X||Y |ℓ′θ2

12 · eH′(X, Y )
> 4an.

Therefore, by using Chernoff’s inequality, since there are at most 24an choices of pairs of
sets {X, Y }, almost surely we have that for any disjoint subsets X and Y of vertices of H ′′

with θ/pH′′ < |X| ≤ |Y | ≤ pH′NH′|X|, inequality (2.18) holds.

Observe that pH′′NH′′ |X| = 2c|X| ≤ c∗|X| = pH′NH′|X|. Therefore, H ′′ is almost surely
(pH′′ , θ)-bijumbled, as by (2.16) and (2.18) we get

|eH′′(X, Y )− pH′′ |X||Y || ≤ |eH′′(X, Y )− p · eH′(X, Y )|+ |p · eH′(X, Y )− pH′′ |X||Y ||
(2.18)
≤ θ

2

√
|X||Y |+ p(|eH′(X, Y )− pH′|X||Y ||)

(2.16)
≤ θ

2

√
|X||Y |+ ℓθ′

ℓ′

√
|X||Y |

= θ
√
|X||Y |.

Therefore, there exists a (pH′′ , θ)-bijumbled graph H ′′ as above. We fix such a graph
and construct the desired graph H from this H ′′ by sequentially removing the an vertices of
highest degree. Notice that H has maximum degree at most b, otherwise this would imply
that H ′′ has more than abn edges, contradicting (2.17). Since H is a subgraph of H ′, and H ′

does not contain cycles of length at most 2ℓ, the same holds for H. Finally, since deleting
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2.4. PROOF OF THEOREM I

vertices preserves the bijumbledness property, we conclude that H ∈ Pn(a, b, c, ℓ, θ). □

Recall that J is the subgraph of Gr′ induced by W , with |W | ≥ a′n/s and edges uv

such that there is a blue copy of Kr0,r0 under χ in the bipartite graph induced by the
vertex sets of blue cliques C ′(u) and C ′(v) in Gr′{ℓ′}. Furthermore, recall that there are
subsets V1, . . . , Vℓ ⊆ V (J) with |Vi| ≥ 2ad0n for 1 ≤ i ≤ ℓ and J [Vi, Vj] is empty for any
1 ≤ i < j ≤ ℓ, and we defined J ′ = J [V1 ∪ · · · ∪ Vℓ] and G′ = G[V1 ∪ · · · ∪ Vℓ]. Lastly, recall
that Qi = (x(i−1)ℓ+1, . . . , xiℓ) for i = 1, . . . , 2an, where the vertices xi belong to G′. Assume,
without loss of generality, V (H) = {Q1, . . . , Qan}. In what follows, when considering the
graph Hr(ℓ), the ℓ-clique corresponding to Qi is composed of the vertices x(i−1)ℓ+1, . . . , xiℓ,
and hence one can view V

(
Hr(ℓ)

)
as a subset of V (G′).

Claim 2.4.7. Hr(ℓ) ⊆ Gr′. Moreover, Gr′ contains a copy of Hr{ℓ} that avoids the edges
of J .

Proof. We will prove that Hr(ℓ) ⊆ Gr′ where Q1, . . . , Qan ⊆ V (J) are the ℓ-cliques of
Hr(ℓ). Suppose that Qi and Qj are at distance at most r in the graph H. Without loss of
generality, let Qi = Q1 and Qj = Qm for some m ≤ r. Moreover, let (Q1, Q2, . . . , Qm) be
a path in H. Note that there exist vertices u1, . . . , um−1 and u′

2, . . . , u
′
m in V (G′) such that

u1 ∈ Q1, u′
m ∈ Qm, uj, u

′
j ∈ Qj for all j = 2, . . . ,m− 1 and {ui, u

′
i+1} is an edge of G′ for

i = 1, . . . ,m− 1.
Let u′

1 ∈ Q1 and um ∈ Qm be arbitrary vertices. Since for any j, the set Qj is spanned
by a path on ℓ vertices in G′, it follows that uj and u′

j are at distance at most ℓ− 1 in G′ for
all 1 ≤ j ≤ m. Therefore, u′

1 and um are at distance at most (ℓ− 1)m+ (m− 1) < ℓr ≤ r′

in G′ and hence u′
1um is an edge in Gr′ [V1 ∪ . . . ∪ Vℓ] ⊆ Gr′ . Since the vertices u′

1 and um

were arbitrary, we have shown that if Qi and Qj are adjacent in Hr (i.e., Qi and Qj are at
distance at most r in H) then (Qi, Qj) gives a complete bipartite graph C(Qi, Qj) in Gr′ .
Moreover, taking i = j we see that each Qi in Gr′ must be complete. This implies that
Hr(ℓ) is a subgraph of Gr′ .

For the second part of the claim we consider which of the edges of this copy of Hr(ℓ)

can also be edges of J . Recall from the definition of J ′ that we found subsets V1, . . . , Vℓ ⊆ J

such that no edge of J lies between different parts. Moreover each set Qi ⊆ J takes precisely
one vertex from each set V1, . . . , Vℓ. It follows that each Qi is independent in J . Now let us
say we have x ∈ Qi and y ∈ Qj (i ̸= j) that are adjacent in J . We can not have x and y in
different parts of the partition {V1, . . . , Vℓ}. Thus x and y lie in the same part. Therefore
edges from J between Qi and Qj must form a matching. Then we can find a copy of Hr{ℓ}
that avoids J by removing a matching between the l-cliques from Hr(ℓ).

□

To complete the proof of Lemma 2.4.3, we will embed a copy of the graph Hr{ℓ} ⊆ Gr′

found in Claim 2.4.7 in Gr′{ℓ′} in such a way that Hr{ℓ} uses at most s− 1 colours.
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Claim 2.4.8. Gr′{ℓ′} contains a copy of Hr{ℓ} with no blue edges.

Proof. Recall that each vertex u in J corresponds to a clique C ′(u) ⊆ Gr′{ℓ′} of size t and
that this clique is monochromatic in blue in the original colouring χ of E(Gr′{ℓ′}). Recall
also that if an edge {u, v} of Gr′ [W ] is not in J , then there is no blue copy of Kr0,r0 in
the bipartite graph between C ′(u) and C ′(v) in Gr′{ℓ′}. By the Kővári–Sós–Turán theorem
(Theorem 2.2.3), there are at most 4t2−1/r0 blue edges between C ′(u) and C ′(v). Recall
further that C ′(u) and C ′(v) are, respectively, subcliques of the ℓ′-cliques C(u) and C(v) in
Gr′{ℓ′}. Since {u, v} is an edge of Gr′ , there is a complete bipartite graph with a matching
removed between C(u) and C(v) in Gr′{ℓ′} and so there is a complete bipartite graph with
at most a matching removed for C ′(u) and C ′(v). It follows that there are at least

t2 − t− 4t2−1/r0

non-blue edges between C ′(u) and C ′(v).

Using the copy of Hr{ℓ} ⊆ Gr′ avoiding edges of J obtained in Claim 2.4.7 as a ‘tem-
plate’, we will embed a copy of Hr{ℓ} in Gr′{ℓ′} with no blue edges. For each vertex
u ∈ V (Hr{ℓ}) ⊆ V (J) we will pick precisely one vertex from C ′(u) ⊆ Gr′{ℓ′} in our embed-
ding. The argument proceeds by the Lovász Local Lemma.

For each u ∈ V (Hr{ℓ}) ⊆ V (J) let us choose xu ∈ C ′(u) uniformly and independently at
random. Let e = {u, v} be an edge of our copy of Hr{ℓ} in Gr′ that is not in J . As pointed
out above, we know that there are at least t2 − t − 4t2−1/r0 non-blue edges between C ′(u)

and C ′(v). Letting Ae be the event that {xu, xv} is a blue edge or a non-edge in Gr′{ℓ′}, we
have that

P[Ae] ≤
t+ 4t2−1/r0

t2
≤ 5t−1/r0 .

The events Ae are not independent, but we can define a dependency graph D for the
collection of events Ae by adding an edge between Ae and Af if and only if e∩f ̸= ∅. Then,
∆ = ∆(D) ≤ 2∆(Hr{ℓ}) ≤ 2(br+1ℓ+ ℓ). From our choice of t we get that

4∆P[Ae] ≤ 40(br+1ℓ+ ℓ2)t−1/r0 ≤ 1

for all e. Then the Local Lemma [5, Lemma 5.1.1] tells us that P
[⋂

e Āe

]
> 0, and hence a

simultaneous choice of the xu’s (u ∈ V (Hr{ℓ})) is possible, as required. This concludes the
proof of Claim 2.4.8. □

The proof of Lemma 2.4.3 is now complete.
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2.5 Concluding Remarks

In Chapter 2, in order to prove Theorem I we needed to show that the family Pn(a, b, c, ℓ, θ)

is non-empty given a good 7-tuple (a, b, c, ℓ, θ,∆, k) with θ ≥ 32
√
c. We prove this in

Lemma 2.3.11 using the binomial random graph. Alternatively, it is possible to replace this
by using explicit constructions of high girth expanders. For example, the Ramanujan graphs
constructed by Lubotzky, Phillips, and Sarnak [82] can be used to prove Lemma 2.3.11.

As pointed out in Section 2.1, every graph with maximum degree and bounded treewidth
is contained in some bounded power of a bounded degree tree and vice versa. This im-
plies that Corollary 2.1.1 is equivalent to Theorem I. For bounded degree graphs, bounded
treewidth is equivalent to bounded cliquewidth and also to bounded rankwidth [65]. There-
fore, Corollary 2.1.1 also holds with treewidth replaced by any of these parameters.

An obvious direction for further research concerning the size-Ramsey number is to in-
vestigate the size-Ramsey number of powers T k of trees T when k and ∆(T ) are no longer
bounded. Haxell and Kohaykawa [59] showed that for every positive integer s, there ex-
ists a constant Cs such that for any tree T with maximum degree at most ∆ we have
r̂s(T ) ≤ Cs∆|T |. Our proof of Theorem I actually shows that r̂s(T

k) ≤ rs(2
∆5k

)|T |, where
rs(t) = Rs(Kt) denotes the s-colour Ramsey number of Kt. It is known (see [29]) that
rs(t) grows as a tower of t of height s. It would be nice to improve Theorem I to a much
smaller constant. In particular, we conjecture that for every positive integer s, there ex-
ists a constant Cs such that for every tree T with maximum degree at most ∆ we have
r̂s(T

k) ≤ Cs2
∆5k |T |.
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Chapter 3

Covering the Random Graph by
Monochromatic Trees

3.1 Introduction

Given a graph G and a positive integer r, let tcr(G) denote the minimum number k such
that in any r-edge-colouring of G, there are k monochromatic trees T1, . . . , Tk such that the
union of their vertex sets covers V (G), i.e.,

V (G) = V (T1) ∪ · · · ∪ V (Tk).

We define tpr(G) analogously by requiring the union above to be disjoint.
It is easy to see that tp2(Kn) = 1 for all n ≥ 1, and Erdős, Gyárfás and Pyber [42]

proved that tp3(Kn) = 2 for all n ≥ 1, and conjectured that tpr(Kn) = r−1 for every n and
r. Haxell and Kohayakawa [58] showed that tpr(Kn) ≤ r for all sufficiently large n ≥ n0(r).
We remark that it is easy to see that tcr(Kn) ≤ r (just pick any vertex v ∈ V (Kn) and
let Ti, for i ∈ [r], be a maximal monochromatic tree of colour i containing v), but it is not
even known whether or not tcr(Kn) ≤ r − 1 for every n and r (as would be implied by the
conjecture of Erdős, Gyárfás and Pyber).

Concerning general graphs instead of complete graphs, Gyárfás [54] noted that a well-
known conjecture of Ryser on matchings and transversal sets in hypergraphs is equivalent
to the following bound on tcr(G).

Conjecture 3.1.1 (Gyárfás’s reformulation of Ryser’s conjecture). For every graph G and
integer r ≥ 2, we have

tcr(G) ≤ (r − 1)α(G). (3.1)

The work described in this chapter was developed in a joint project with Yoshiharu Kohayakawa,
Guilherme Oliveira Mota and Bjarne Schülke.
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In particular, Ryser’s conjecture, if true, would imply that tcr(Kn) ≤ r − 1, for every
n ≥ 1 and r ≥ 2. Ryser’s conjecture was proved in the case r = 3 by Aharoni [1], but
for r ≥ 4 very little is known. For example, Haxell and Scott [61] proved (in the context
of Ryser’s original conjecture) that there exists ϵ > 0 such that for r ∈ {4, 5}, we have
tcr(G) ≤ (r − ϵ)α(G), for any graph G.

Bal and DeBiasio [7] initiated the study of covering and partitioning random graphs
by monochromatic trees. They proved that if p ≪

(
logn
n

)1/r
, then with high probability1

we have tcr(G(n, p)) → ∞. They conjectured that for any r ≥ 2, this was the correct
threshold for the event tpr(G(n, p)) ≤ r. Kohayakawa, Mota and Schacht [68] proved that
this conjecture holds for r = 2, while Ebsen, Mota and Schnitzer2 showed that it does not
hold for more than two colours.

Bucić, Korándi and Sudakov [17] proved that if p ≪
(
logn
n

)√r/2r−2

, then w.h.p. we have
tcr(G(n, p)) ≥ r + 1, which implies that the threshold for the event tcr(G) ≤ r is in fact
significantly larger than the one conjectured by Bal and DeBiasio when r is large. Bucić,
Korándi and Sudakov also proved that w.h.p. we have tcr(G(n, p)) ≤ r for p ≫

(
logn
n

)1/2r
.

They were also able to roughly determine the typical behaviour of tcr(G(n, p)) in terms of
the range where p lies in (see [17, Theorems 1.3 and 1.4]).

Considering colourings with three colours, the general results from [17], as stated, imply
that if p ≫

(
logn
n

)1/8
, then w.h.p. we have tc3(G(n, p)) ≤ 3, and if p ≫

(
logn
n

)1/6
, then w.h.p.

tc3(G(n, p)) ≤ 88 (the methods from [17] may actually give a somewhat better upper bound
than 88, if one optimizes their calculations). Our main theorem in this chapter improves
these bounds.

Theorem II. If p = p(n) satisfies p ≫
(
logn
n

)1/6
, then with high probability we have

tc3
(
G(n, p)

)
≤ 3.

It can be easily seen that if 1−p ≪ n−1, then w.h.p. there is a 3-edge-colouring of G(n, p)

for which 3 monochromatic trees are needed to cover all vertices — it suffices to consider
three non-adjacent vertices x1, x2 and x3, and colour the edges incident to xi with colour i

and colour all the remaining edges with any colour. Therefore, the bound for tc3(G(n, p))

in Theorem II is the best possible as long as p is not too close to 1.
We remark that, from the example described in [68], we know that for p ≪

(
logn
n

)1/4
,

we have w.h.p. tc3(G(n, p)) ≥ 4. It would be very interesting to describe the behaviour of
tc3(G(n, p)) when

(
logn
n

)1/4 ≪ p ≪
(
logn
n

)1/6
.

This chapter is organized as follows. In Section 3.2 we present some definitions and
auxiliary results that we will use in the proof of Theorem II, which is outlined in Section 3.3.
The details of the proof of Theorem II are given in Section 3.4.

1We will write shortly w.h.p. for with high probability.
2A description of this construction can be found in [68].
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3.2 Preliminaries

Most of our notation is standard (see [13, 15, 31] and [14, 63]). However, we will mention in
the following few definitions regarding hypergraphs that will play a major role in our proofs
just for completeness.

We say that a set A of vertices in a hypergraph H is a vertex cover if every hyperedge of
H contains at least one element of A. The covering number of H, denoted by τ(H), is the
smallest size of a vertex cover in H. A matching in H is a collection of disjoint hyperedges
in H. The matching number of H, denoted by ν(H), is the largest size of a matching in
H. An immediate relationship between τ(H) and ν(H) is the inequality ν(H) ≤ τ(H).
If additionally H is r-uniform, then we have τ(H) ≤ rν(H). A conjecture due to Ryser
(which first appeared in the thesis of his Ph.D. student, Henderson [62]) states that for
every r-uniform r-partite hypergraph H, we have τ(H) ≤ (r − 1)ν(H). Note that the
König–Egerváry theorem corresponds to Ryser’s conjecture for r = 2. Aharoni [1] proved
that Ryser’s conjecture holds for r = 3, but the conjecture remains open for r ≥ 4.

Given a vertex v in a 3-uniform hypergraph H, the link graph of H with respect to v is
the graph Lv = (V,E) with vertex set V = V (H) and edge set E = {xy : {x, y, v} ⊆ H}.

We will use the following theorem due to Erdős, Gyárfás and Pyber [42] in the proof of
our main result.

Theorem 3.2.1 (Erdős, Gyárfás and Pyber). For any 3-edge-colouring of a complete graph
Kn, there exists a partition of V (Kn) into 2 monochromatic trees.

We will also use the following lemma, which is a simple application of Chernoff’s in-
equality. For a proof of the first item see [74, Lemma 3.8]. The second item is an immediate
corollary of [74, Lemma 3.10].

Lemma 3.2.2. Let ε > 0. If p = p(n) ≫
(
logn
n

)1/6
, then w.h.p. G ∈ G(n, p) has the

following properties.

(i ) For any disjoint sets X, Y ⊆ V (G) with |X|, |Y | ≫ logn
p

, we have

|EG(X, Y )| = (1± ε)p|X||Y |.

(ii ) Every vertex v ∈ V (G) has degree dG(v) = (1 ± ε)pn and every set of i ≤ 6 vertices
has (1± ε)pin common neighbours.

3.3 A sketch of the proof

In this section we will give an overview of the proof of Theorem II. Let G = G(n, p), with
p ≫

(
logn
n

)1/6
, and let φ : E(G) → {red, green, blue} be any 3-edge-colouring of G. We

31



3.3. A SKETCH OF THE PROOF

consider an auxiliary graph F , with V (F ) = V (G) and ij ∈ E(F ) if and only if there
is, in the colouring φ, a monochromatic path in G connecting i and j. Then we define
a 3-edge-colouring φ′ of F with φ′(ij) being the colour of any monochromatic path in G

connecting i and j. Note that any covering of F with monochromatic trees with respect to
the colouring φ′ corresponds to a covering of G with monochromatic trees with respect to
the colouring φ with the same number of trees.

Next, we consider different cases depending on the value of α(F ). If α(F ) = 1, then F is
a complete 3-edge-coloured graph and by a theorem of Erdős, Gyárfás and Pyber (see The-
orem 3.2.1), there exists a partition of V (F ) into 2 monochromatic trees. The remaining
proof now is divided into the cases α(F ) ≥ 3 and α(F ) = 2.

Case α(F ) ≥ 3. From the condition on the independence number of G, there exist three
vertices r, b, g ∈ V (G) that pairwise do not have any monochromatic path connecting them.
With high probability, they have a common neighbourhood in G of size at least np3/2.
Let Xrbg be the largest subset of this common neighbourhood such that for each i ∈ {r, b, g},
the edges from i to Xrbg in G are all coloured with one colour. Then, since there are no
monochromatic paths between any two of r, b, g, we have |Xrbg| ≥ np3/12 and moreover we
may assume that all edges between r and Xrbg are red, all between b and Xrbg are blue and
those between g and Xrbg are green. Now we notice that all vertices that have a neighbour
in Xrbg are covered by the union of the spanning trees of the red component of r, the blue
component of b and the green component of g.

We are done in the case where every vertex has a neighbour in Xrbg, as the vertices in
Xrbg ∪ NG(Xrbg) are covered by the red, blue and green component containing r, b and g,
respectively. Otherwise, w.h.p. any vertex y ∈ V \ (Xrbg ∪NG(Xrbg)) has many common
neighbours with r, b and g in G that are also neighbours of some vertex in Xrbg. An analysis
of the possible colourings of the edges between Xrbg and the common neighbourhood of the
vertices r, b, g and y yields the following: for some i ∈ {r, b, g}, let us say i = r, every vertex
y ∈ Xrbg can be connected to r by a monochromatic path in colour red or either to g or b

by a monochromatic path in the colour blue or green, respectively.
This already gives us that all vertices in G can be covered by 5 monochromatic trees,

since all the vertices in NG(Xrbg) lie in the red component of r, or the green component of g,
or in the blue component of b and every vertex in V \ NG(Xrbg) lies in the red component
of r, in the blue component of g or in the green component of b. By analysing the colours of
edges to the common neighbourhood of carefully chosen vertices, we are able to show that
actually three of those five trees already cover all the vertices of G.

Case α(F ) = 2. Let us consider a 3-uniform hypergraph H defined as follows (this definition
is inspired by a construction of Gyárfás [54] and also appears in [17]). The vertices of H are
the monochromatic components of F and three vertices form a hyperedge if the correspond-
ing three components have a vertex in common (in particular, those three monochromatic
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components must be of different colours). Hence, H is a 3-uniform 3-partite hypergraph.
We observe that if A is a vertex cover of H, then the monochromatic components asso-

ciated with the vertices in A cover all the vertices of G. This implies that tc3(G) ≤ τ(H).
Also, it is easy to see that ν(H) ≤ α(F ) = 2. Now, recall that Aharoni’s result [1] (which
corresponds to Ryser’s conjecture for r = 3) states that for every 3-uniform 3-partite hy-
pergraph H we have τ(H) ≤ 2ν(H). Together with the previous observation, this implies
tc3(G) ≤ 4. But our goal is to prove that tc3(G) ≤ 3. To this aim, we analyse the hypergraph
H more carefully, reducing the situation to a few possible settings of components covering
all vertices. In each of those cases, we can again analyse the possible colouring of edges
of common neighbours of specific vertices, inferring that indeed there are 3 monochromatic
components which cover all vertices.

3.4 Proof of Theorem II

Instead of analysing the colouring of the graph G = G(n, p), it will be helpful to analyse the
following auxiliary graph.

Definition 3.4.1 (Shortcut graph). Let G be a graph and φ be a 3-edge-colouring of G.
The shortcut graph of G (with respect to φ) is the graph F = F (G,φ) that has V (G) as the
vertex set and the following edge set:

{uv : u, v ∈ V (G) and u and v are connected in G by a path monochromatic under φ}.

Let us consider an edge-multicolouring φ′ of F = F (G,φ) which assigns to an edge uv ∈
E(F (G,φ)) the list of all the colours of monochromatic paths connecting u and v in G

under the colouring φ. We will say that φ′ is the inherited colouring3 of F (G,φ). We say
that an edge e ∈ F (G,φ) has colour ρ (or is coloured with ρ) if ρ belongs to the list of
colours assigned to e by φ′. We say that a subgraph H of F (G,φ) is monochromatic under
φ′ if all the edges of H are coloured with a common colour. Let tc(F, φ′) be the minimum
number k such that there are k trees T1, . . . , Tk which are monochromatic under φ′ such that
V (F ) = V (T1) ∪ · · · ∪ V (Tk). Note that any covering of F (G,φ) with monochromatic trees
under φ′ corresponds to a covering of G with monochromatic trees under the colouring φ. In
particular, if we show that for every 3-edge-colouring φ of G, we have tc(F, φ′) ≤ 3, where
F = F (G,φ) is the shortcut graph of G with respect to φ, and φ′ is the inherited colouring
of F , then we have shown that tc3(G) ≤ 3. Therefore, Theorem II follows from the following
lemma.

3Although φ′ is a multicolouring, in the sense that we assigned several colours to each edge, we will refer
to it as colouring, for simplicity.
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Lemma 3.4.2. Let p ≫
(
logn
n

)1/6
and let G = G(n, p). The following holds with high

probability. For any 3-edge-colouring φ of G, we have tc(F, φ′) ≤ 3, where F is the shortcut
graph F = F (G,φ) and φ′ is the inherited colouring of F .

The proof of Lemma 3.4.2 is divided into two different cases, depending on the indepen-
dence number of F . Subsections 3.4.1 and 3.4.2 are devoted, respectively, to the proof of
Lemma 3.4.2 when α(F ) ≥ 3 and α(F ) ≤ 2.

From now on, we fix ε > 0 and assume that p ≫
(
logn
n

)1/6
and n is sufficiently large.

Then, by Lemma 3.2.2, we may assume that the following holds w.h.p.:

1. There is an edge between any two sets of size ω ((log n)/p).

2. Every vertex v ∈ V (G) has degree dG(v) = (1± ε)pn.

3. Every set of i ≤ 6 vertices has (1± ε)pin common neighbours.

3.4.1 Shortcut graphs with independence number at least three

Proof of Lemma 3.4.2 for α(F ) ≥ 3. Since α(F ) ≥ 3, there exist three vertices r, b, g ∈
V (G) that pairwise do not have any monochromatic path connecting them in G. In partic-
ular, if v is a common neighbour of r, b and g in G, then the edges vr, vb and vg have all
different colours. The common neighbourhood of r, b and g in G has size at least np3/2.
Let Xrbg be the largest subset of this common neighbourhood such that for each i ∈ {r, b, g},
the edges between i and the vertices of Xrbg are all coloured with the same colour in G.
Then |Xrbg| ≥ np3/12. Without loss of generality, assume that all edges between r and the
vertices of Xrbg are red, between b and the vertices of Xrbg are blue and those between g

and the vertices of Xrbg are green. Let Cred(r), Cblue(b) and Cgreen(g) be respectively the
red, blue and green components in G containing r, g and b.

Notice that all vertices of F that have a neighbour in Xrbg are covered by Cred(r), Cblue(b)

or Cgreen(g). Therefore, the proof would be finished if every vertex had a neighbour in Xrbg.
If this is not the case, we fix an arbitrary vertex y ∈ V \ (Xrbg ∪NG(Xrbg)). By our choice
of p, there are at least np4/2 common neighbours of y, r, b and g. Let Xyrbg be the largest
subset of the common neighbourhood of y, r, b and g such that for each i ∈ {r, b, g}, the
edges between i and Xyrbg are all coloured the same. Then |Xyrbg| ≥ np4/12. Note that
since y /∈ NG(Xrbg), the sets Xyrbg and Xrbg are disjoint. Furthermore, since |Xyrbg|, |Xrbg| ≫
logn
p

, we have

|EG(Xyrbg, Xrbg)| ≥ 1.

We now analyse the colours between r, b, g and the set Xyrbg. Again, since there is
no monochromatic path connecting any two of r, b and g, all i ∈ {r, b, g} have to connect
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Figure 3.1: Analysis of the colouring of the edges incident on Xrbg and on Xyrbg.

to Xyrbg in different colours. Since Xyrbg is disjoint from Xrbg, by the maximality of Xrbg we
cannot have r, b and g being simultaneously connected to Xyrbg by red, blue and green edges,
respectively. Assume first that for each i ∈ {r, b, g}, the edges between i and Xyrbg have
different colours from the edges between i and Xrbg. Then let uv be an edge between Xyrbg

and Xrbg and notice that whatever the colour of uv is, we will have a monochromatic
path connecting two of the vertices in {r, g, b}. Therefore, we can assume that for some i ∈
{r, g, b}, we have that all the edges between i and Xrbg and all the edges between i and Xyrbg

coloured the same. Without loss of generality, we may say that such i is r. In this case, the
edges between b and Xyrbg are green and the edges between g and Xyrbg are blue. Finally,
all the edges between Xyrbg and Xrbg are red, otherwise we would be able to connect b and g

by some monochromatic path. Figure 3.1 shows the colouring of the edges that we have
analysed so far.

Let us now consider any further vertex x ∈ V \ (Xrbg ∪NG(Xrbg)) with x ̸= y, if such
a vertex exists. We define Xxrbg analogously to Xyrbg and observe that the colour pattern
from r, b, g to Xxrbg must be the same as the one to Xyrbg. Indeed, if this is not the
case, then a similar analysis of the colours of the edges between {r, b, g} and Xxrbg yields
that for some i ∈ {b, g}, we know that the edges connecting i to Xxrbg are of the same
colour as the edges connecting i to Xrbg. Without loss of generality, let us say that i is g.
Then the edges between b and Xxrbg are red and the edges between r and Xxrbg are green,
otherwise Xxrbg and Xrbg would not be disjoints sets. Figure 3.2 shows the colouring of
the edges incident to Xyrbg and Xxrbg. Since |Xyrbg|, |Xxrbg| ≫ logn

p
, we have that there

is some edge uv between Xyrbg and Xxrbg. But then however we colour uv, we will get a
monochromatic path connecting two vertices in {r, b, g}, which is a contradiction. Thus, the
colour pattern of edges between {r, b, g} and Xxrbg is the same as the colour pattern of the
edges between {r, b, g} and Xyrbg.

Therefore, we have that each vertex in Xrbg ∪NG(Xrbg) belongs to one of the monochro-
matic components Cred(r), Cblue(b) or Cgreen(g), while a vertex in V (G) \ (Xrbg ∪NG(Xrbg))

belongs to one of the monochromatic components Cred(r), Cgreen(b) or Cblue(g) where the
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Figure 3.2: Analysis of the colour of the edges incident on Xyrbg and on Xxrbg.

latter two are the green component containing b and the blue component containing g, re-
spectively. This gives a covering of G with five monochromatic trees. Next we will show
that actually three of those trees already cover all the vertices.

Suppose that at least four among the components Cred(r), Cblue(b), Cgreen(b), Cgreen(g),
and Cblue(g) are needed to cover all vertices. Since there does not exist any monochromatic
path between any two of r, b, g, we know that for each i ∈ {r, b, g}, any monochromatic
component containing i does not intersect {r, g, b} \ {i}. Hence, for each i ∈ {r, b, g},
one of these components contains i. Also, one element in {r, b, g} belongs to two of these
components. Without loss of generality, let us say that b belongs to two of these components.
Therefore, Cred(r), Cblue(b) and Cgreen(b) are three of these at least four components needed
to cover all the vertices. Now there are two cases regarding the fourth component: we
need Cgreen(g) as the fourth component or we need Cblue(g) (those two cases might intersect).

We begin with the first case, where we need the components Cred(r), Cblue(b), Cgreen(b)

and Cgreen(g) to cover all the vertices of G. Let

b̃ ∈ Cblue(b) \ (Cred(r) ∪ Cgreen(b) ∪ Cgreen(g))

and let
g̃ ∈ Cgreen(b) \ (Cred(r) ∪ Cblue(b) ∪ Cgreen(g)) .

Then let Xb̃g̃rbg be the maximum set of common neighbours of b̃, g̃, r, g, b such that for
each i ∈ {b̃, g̃, r, b, g}, the edges from i to Xb̃g̃rbg are all coloured the same. Since |Xb̃g̃rbg| ≥
np5/240 ≫ logn

p
, we have

|EG(Xb̃g̃rbg, Xyrbg)| ≥ 1 and |EG(Xb̃g̃rbg, Xrbg)| ≥ 1.

We will analyse the possible colours of the edges between the specified vertices and Xb̃g̃rbg.
If for each of r, b, g, the colour it sends to Xb̃g̃rbg is different from the colour it sends to Xrbg,
then any edge between Xb̃g̃rbg and Xrbg ensures a monochromatic path between two of r, b, g
(in the colour of that edge). Similarly, it cannot happen that for each of r, b, g, the colour
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it sends to Xb̃g̃rbg is different from the colour it sends to Xyrbg. Thus, since r sends red to
both Xrbg and Xyrbg while the colours from b (and g) to Xrbg and Xyrbg are switched, the
colour of the edges between r and Xb̃g̃rbg is red.

Now note that, by the choice of b̃ and g̃, the edges between each of them and Xb̃g̃rbg

can not be red. Further, the choice implies that an edge between b̃ and Xb̃g̃rbg can not be
of the same colour (green or blue) as an edge between g̃ and Xb̃g̃rbg. If g would send blue
(and hence b would send green) edges to Xb̃g̃rbg, there would either be a blue path between b

and g (if the edges between b̃ and Xb̃g̃rbg are blue) or b̃ would lie in Cgreen(b) (if the edges
between b̃ and Xb̃g̃rbg are green). Since both those situations would mean a contradiction,
we may assume that each of r, b, g sends edges with that colour to Xb̃g̃rbg as it does to Xrbg.
But then Xb̃g̃rbg is actually a subset of Xrbg and since g̃ has an edge to Xrbg, it lies in one
of Cred(r), Cblue(b), or Cgreen(g); a contradiction.

In the case where the forth component that we need is Cblue(g), we repeat the construction
of Xb̃g̃rbg similarly as before by letting

b̃ ∈ Cblue(b) \ (Cred(r) ∪ Cgreen(b) ∪ Cblue(g))

and
g̃ ∈ Cgreen(b) \ (Cred(r) ∪ Cblue(b) ∪ Cblue(g)).

Also as before, we end up with Xb̃g̃rbg being part of Xrbg. From the choice of g̃, the edges
it sends to Xb̃g̃rbg have to be green, since otherwise it would be in Cred(r) or Cblue(b). But
that gives a green path between b and g, a contradiction.

Summarising, we infer that three components among Cred(r), Cblue(b), Cgreen(b), Cgreen(g)

and Cblue(g) cover the vertex set of G.

3.4.2 Shortcut graphs with independence number at most two

Proof of Lemma 3.4.2 for α(F ) ≤ 2. We start by noticing that if α(F ) = 1, then the graph F

together with the colouring φ′ is a complete 3-coloured graph and therefore, by Theo-
rem 3.2.1, there exists a partition of V (F ) into 2 monochromatic trees. Thus, we may
assume that α(F ) = 2.

Let H be the 3-uniform hypergraph with V (H) being the collection of all the monochro-
matic components of F under the colouring φ′ and three monochromatic components form
a hyperedge in H if they share a vertex. Notice that H is 3-partite, since distinct monochro-
matic components of the same colour do not have a common vertex and therefore they can
not belong to the same hyperedge. In other words, the colour of each component give us a 3-
partition of the vertex set of H. We denote by Vred,Vblue and Vgreen the set of vertices of V (H)

that correspond to, respectively, red, blue and green components. Such construction was
inspired by a construction due to Gyárfás [54] and it was also used in [17].
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Note that every vertex v of F is contained in a monochromatic component for each one
of the colours (a monochromatic component could consist only of v). Therefore, any vertex
cover of H corresponds to a covering of the vertices of F with monochromatic trees. Indeed,
if A is a vertex cover of H, then consider the monochromatic components corresponding to
each vertex in A. If any vertex v of F is not covered by those components, then the vertices
in H corresponding to the red, green and blue components in F containing v do not belong
to A and they form an hyperedge. But this contradicts the fact that A is a vertex cover of
H. Therefore,

tc(F, φ′) ≤ τ(H). (3.2)

The inequality (3.2) corresponds to Proposition 4.1 in [17] in our setting.

Let L =
⋃

s∈Vred
Ls be the union of the link graphs Ls of all vertices s ∈ Vred. Any

vertex cover of this bipartite graph L corresponds to a vertex cover of H of the same size.
Therefore,

τ(H) ≤ τ(L). (3.3)

Furthermore, by the König–Egerváry theorem we know that τ(L) = ν(L). Thus, if ν(L) ≤ 3,
then by (3.2) and (3.3), we have

tc(F, φ′) ≤ τ(H) ≤ τ(L) = ν(L) ≤ 3.

Therefore, we may assume that ν(L) ≥ 4, and fix a matching ML of size at least four
in L. Let us say that ML consists of the edges G1B1, G2B2, G3B3, and G4B4, where
{G1, G2, G3, G4} ⊆ Vgreen and {B1, B2, B3, B4} ⊆ Vblue.

Now we give an upper bound for ν(H). Note that any matching MH in H gives us an
independent set I in F . Indeed, for each hyperedge e ∈ MH, let ve ∈ V (F ) be any vertex
in the intersection of those monochromatic components associated to the vertices in e and
let I = {ve : e ∈ MH}. We claim that I is an independent set in F . Indeed, if ve and vf

were adjacent vertices in I, then e and f intersect, as the edge connecting ve to vf in F will
connect the monochromatic components containing ve and vf of that colour that is given to
the edge vevf . Therefore, since α(F ) = 2, we have

ν(H) ≤ α(F ) = 2. (3.4)

Now, if there are three different edges in ML that are edges in the link graphs of three
different vertices of Vred, then there would be a matching of size 3 in H, contradicting (3.4).
Therefore, we may assume that ML is contained in the union of at most two link graphs,
say LR1 and LR2 , of vertices R1, R2 ∈ Vred. Now we are left with three cases: (Case 1) two
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edges of ML belong to LR1 and two belong to LR2 ; (Case 2) three edges of ML belong to LR1

and one to LR2 ; (Case 3) the four edges of ML belong to LR1 . Without loss of generality,
we can describe each of those three cases as follows (see Figures 3.3, 3.4 and 3.5):

Case 1: The edges G1B1 and G2B2 belong to LR1 and the edges G3B3 and G4B4 belong
to LR2 . That means that all the following four sets are non-empty:

J1 := R1 ∩G1 ∩B1,

J2 := R1 ∩G2 ∩B2,

J3 := R2 ∩G3 ∩B3,

J4 := R2 ∩G4 ∩B4.

Case 2: The edges G1B1, G2B2 and G3B3 belong to LR1 and the edge G4B4 belongs to LR2 .
That means that all the following four sets are non-empty:

J1 := R1 ∩G1 ∩B1,

J2 := R1 ∩G2 ∩B2,

J3 := R1 ∩G3 ∩B3,

J4 := R2 ∩G4 ∩B4.

Case 3: The edges G1B1, G2B2, G3B3 and G4B4 belong to LR1 . That means that all the
following four sets are non-empty:

J1 := R1 ∩G1 ∩B1,

J2 := R1 ∩G2 ∩B2,

J3 := R1 ∩G3 ∩B3,

J4 := R1 ∩G4 ∩B4.

In this case, let R2 be any other red component different from R1 and let B and G

be, respectively, a blue and a green component with R2 ∩ B ∩ G ̸= ∅. Suppose that
G /∈ {G1, G2, G3, G4}. Then the three of the edges G1B1, G2B2, G3B3 and G4B4 are not
incident to GB (because B must be different from at least three of the sets B1, B2, B3 and
B4) and these three edges together with GB may be analysed just as in Case 2. Therefore,
we may suppose that G ∈ {G1, G2, G3, G4}. Let us say, without loss of generality, that
G = G4. If B /∈ {B1, B2, B3}, then the edges G1B1, G2B2 and G3B3 belong to LR1 , the
edge GB belongs to LR2 and this case may be analysed, again, just as in Case 2. Therefore,
we may assume that B ∈ {B1, B2, B3}. Let us say, without loss of generality that B = B3.
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Figure 3.3: Case 1

Then let J5 be the following non-empty set:

J5 := R2 ∩G4 ∩B3. (3.5)

Let us further remark that, since ν(H) ≤ 2, in each of the three cases above, we have

V (F ) = R1 ∪R2 ∪G1 ∪G2 ∪G3 ∪G4 ∪B1 ∪B2 ∪B3 ∪B4.

Otherwise, for any uncovered vertex v ∈ V (F ), the hyperedge given by the red, blue
and green components containing v together with the hyperedges R1B1G1 and R2B3G3

(in Cases 1 and 2) or R2B3G4 (in Case 3) is a matching of size 3 in H.
Let us start with Case 1.

Proof in Case 1: We will prove that R1 and R2 together with possibly one further monochro-
matic component cover V (F ). For each i ∈ {1, 2, 3, 4}, let B̃i = Bi \ (R1 ∪ R2) and
G̃i = Gi \ (R1 ∪R2).

Pick vertices ji ∈ Ji, with i ∈ {1, 2, 3, 4}, arbitrarily. Consider a vertex o ∈ B̃1 (if such
a vertex exists). Since α(F ) = 2, there is an edge connecting two of o, j2, j3. Because j2

and j3 belong to different components of each colour, such an edge must be incident to o.
So let us say that such edge is oji, for some i ∈ {2, 3}. Since o /∈ R1 ∪ R2, the edge oji

cannot be red. And since o ∈ B1, oji cannot be blue either, otherwise we would connect
the blue components B1 and Bi. Now assume that o and j2 are not adjacent. Then oj3 is a
green edge in F . By analogously analysing the edge between o, j2 and j4 together with the
supposition that oj2 is not an edge in F , we get that oj4 must be a green edge in F . But
then we have a green path j3oj4 connecting j3 to j4, a contradiction. Therefore oj2 is an
edge in F and it is green. That implies that o ∈ G2. Therefore B̃1 ⊆ G2. Analogously, we
can conclude the following:

B̃1 ⊆ G2, G̃1 ⊆ B2,

B̃2 ⊆ G1, G̃2 ⊆ B1,

B̃3 ⊆ G4, G̃3 ⊆ B4,

B̃4 ⊆ G3, G̃4 ⊆ B3.

(3.6)
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Claim 3.4.3. We have B̃1 ∪ G̃1 ∪ B̃2 ∪ G̃2 = ∅ or B̃3 ∪ G̃3 ∪ B̃4 ∪ G̃4 = ∅.

Proof. Suppose for a contradiction that there exist o1 ∈ B̃1 ∪ G̃1 ∪ B̃2 ∪ G̃2 and o2 ∈
B̃3 ∪ G̃3 ∪ B̃4 ∪ G̃4. Recall that from our choice of p, there is some z ∈ N(j1, j2, j3, j4, o1, o2).
Two of the edges zji,for i ∈ {1, 2, 3, 4}, have the same colour. Since each ji belongs to
different green and blue components, those two edges are red. Since {j1, j2} ∈ R1 and
{j3, j4} ∈ R2, those two red edges are either zj1 and zj2 or zj3 and zj4. Let us say that
zj1 and zj2 are red (the other case is similar). Then one of the edges zj3 and zj4 has to be
green and the other blue. Now, since o1 /∈ R1, the edge zo1 is either green or blue. Then
one of the paths o1zj3 or o1zj4 is green or blue. This implies that o1 ∈ B3 ∪G3 ∪ B4 ∪G4.
On the other hand, (3.6) implies that o1 ∈ (B1 ∪B2) ∩ (G1 ∪G2). But then we reached
a contradiction, since that would mean that o1 belongs to two different components of the
same colour. □

We may assume without loss of generality that B̃3 ∪ G̃3 ∪ B̃4 ∪ G̃4 is empty. Then,
recalling that ν(H) ≤ 2 and in view of (3.6), the union of the components R1, B1, G1 and
R2 covers every vertex of F . If we show that B1 ⊆ G1 ∪R1 ∪R2 or that G1 ⊆ B1 ∪R1 ∪R2,
then we get three monochromatic components covering the vertices of F . Our next claim
states precisely that.

Claim 3.4.4. We have B̃1 \G1 = ∅ or G̃1 \B1 = ∅.

Proof. Suppose that there exist two distinct vertices b ∈ B̃1 \G1 and g ∈ G̃1 \ B1. Let z ∈
N(j1, j2, j3, j4, b, g). As before, either zj1 and zj2 or zj3 and zj4 are red edges. First assume
that zj1 and zj2 are red. Then one of the edges zj3 and zj4 has to be green and the other
blue. Now, since b /∈ R1, the edge zb is either green or blue. Then one of the paths bzj3 or
bzj4 is green or blue. This implies that b ∈ B3 ∪ G3 ∪ B4 ∪ G4. On the other hand, (3.6)
implies that b ∈ B1 ∩ G2. Then we reached a contradiction, since that would mean that b

belongs to two different components of the same colour.
Therefore, the edges zj3 and zj4 are red and one of the edges zj1 and zj2 is green and the

other is blue. First let us say that zj1 is green and zj2 is blue. Since b /∈ (R1∪R2), the edge
zb cannot be red. Also the edge zb cannot be blue otherwise the path bzj2 would connect
the components B1 and B2. Finally, zb cannot be green, otherwise the path bzj1 would gives
us that b ∈ G1. Therefore, zj1 is blue and zj2 is green. But this case analogously leads to a
contradiction (with g and Gi instead of b and Bi and green and blue switched). □

We proceed to the proof of Case 2.

Proof in Case 2: As in Case 1, pick vertices ji ∈ Ji, with i ∈ {1, 2, 3, 4} arbitrarily.
We claim that V (F ) ⊆ R1 ∪ R2 ∪ B4 ∪ G4. Indeed, let o ∈ V (F ) \ (R1 ∪ R2). No-
tice that since α(F ) = 2, there is an edge in each of the following sets of three ver-
tices: {o, j4, j1}, {o, j4, j2}, and {o, j4, j3}. We claim that oj4 is an edge of F . Indeed,
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Figure 3.4: Case 2

if this was not the case, then since there cannot be an edge between j4 and ji for i = 1, 2, 3,
we would have the edges oj1, oj2 and oj3 and all of them would be coloured green or blue.
Thus, two of them would be coloured the same, connecting two distinct components of one
colour in this colour, a contradiction. So oj4 ∈ E(F ) and since oj4 cannot be red, we
conclude that o ∈ (B4 ∪G4). Therefore, R1, R2, B4 and G4 cover all vertices of F .

If B4 \ (R1∪R2∪G4) = ∅ or G4 \ (R1∪R2∪B4) = ∅, then we get three monochromatic
components covering V (F ). So let us assume that there exist b ∈ B4 \ (R1 ∪ R2 ∪ G4)

and g ∈ G4 \ (R1∪R2∪B4). If b and g are not adjacent, then since each of the sets {b, g, ji},
for i = 1, 2, 3, has to induce at least one edge, there are two edges between b and {j1, j2, j3}
or two edges between g and {j1, j2, j3}. However, from the choice of b, we know that all the
edges between b and {j1, j2, j3} are green, and therefore, two of such edges would give us a
green connection between two different green components, a contradiction. Similarly, from
the choice of g, we know that all the edges between b and {j1, j2, j3} are blue, and two of
such edges would give us a blue connection between two different blue components, again a
contradiction.

Hence, we conclude that bg ∈ F for any b ∈ B4 \ (R1 ∪ R2 ∪ G4) and any g ∈ G4 \
(R1 ∪ R2 ∪ B4) and any such edge bg is red. Therefore, there is a red component R3

covering (B4△G4) \ (R1 ∪ R2), where B4△G4 denotes the symmetric difference. If (B4 ∩
G4) \ (R1 ∪R2) = ∅, then R1, R2 and R3 cover V (F ) and we are done. Therefore, suppose
there is a vertex x ∈ (B4 ∩ G4) \ (R1 ∪ R2). If R2 \ (B4 ∪ G4) = ∅, then R1, B4, G4

cover V (F ) and we are done. Therefore, suppose there is a vertex y ∈ R2 \ (B4 ∪G4). Note
that xy /∈ E(F ), since x and y belong to different components in each of the colours. Also,
xji /∈ E(F ), for i ∈ {1, 2, 3}, since otherwise two different components of the same colour
would be connected in that colour by the edge xji. Now α(F ) = 2 implies that yji ∈ E(F ),
for i ∈ {1, 2, 3} (otherwise, {x, y, ji} would be an independent set). But these edges must
all be green or blue, hence two of them are of the same colour, connecting two different
components of one colour in that colour, a contradiction.

We arrived at the last case, Case 3.

Proof in Case 3: Similarly to the previous cases, let us pick vertices ji ∈ Ji, with i ∈
{1, 2, 3, 4, 5} arbitrarily. We will show first that we can cover all vertices of F with four
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Figure 3.5: Case 3

monochromatic components. Let o1, o2 ∈ V (F ) \ (R1 ∪ B3 ∪ G4) and let z be a vertex in
N(j1, j2, j3, o1, o2, j5). At least one of the edges zj1, zj2 and zj3 is red, as otherwise we
would connect two distinct components of one colour in that colour. Therefore, z ∈ R1.
Since o1, o2, j5 /∈ R1, the edges zo1, zo2 and zj5 cannot be red. Furthermore, o1z and o2z

are coloured with a colour different from the colour of the edge j5z, as otherwise they would
belong to B3 or G4. Thus, o1 and o2 are connected by a monochromatic path in green or
blue. Hence, we showed that any two vertices of V (F ) \ (R1 ∪ B3 ∪ G4) are connected by
a monochromatic path in green or blue. We infer that there is a green or blue component
covering V (F ) \ (R1 ∪ B3 ∪ G4). Therefore, R1, B3, G4 and one further blue or green
component C cover all vertices of G. Let us assume that C is a green component; the case
where C is a blue component is analogous.

We claim that R1∪B3∪C, or R1∪G4∪C, or R1∪B3∪G4 covers V (F ). Indeed, suppose for
the sake of contradiction that there exist vertices g ∈ G4\(R1∪B3∪C), b ∈ B3\(R1∪G4∪C)

and c ∈ C \ (R1 ∪B3 ∪G4). Let z ∈ N(j1, j2, j3, g, b, c) and note that one of zj1, zj2 and zj3

is red. Consequently gz, cz and bz are not red. Notice, however, that gz and bz can not be
both green and neither both blue. Now let us say cz is green. Since c /∈ G4 and g ∈ G4,
we would have gz blue in this case. But then bz must be green and since c ∈ C and C is
a green component, we have b ∈ C, which is a contradiction. Therefore, cz must be blue.
Then, since c /∈ B3 and b ∈ B3, the edge bz should be green. Thus the edge gz is blue. Since
this argument holds for any g ∈ G4 \ (R1 ∪B3 ∪C) and c ∈ C \ (R1 ∪B3 ∪G4), we conclude
that V (F )\(R1∪B3) can be covered by one blue tree. Hence, G can be covered by the three
monochromatic trees. This finishes the last case and thereby the proof of Lemma 3.4.2.

3.5 Concluding Remarks

The prove Theorem II relied mainly on the fact the random graph G(n, p) has the properties
stated in Lemma 3.2.2. It is easy to see that if G is graph on n vertices with δ(G) ≥
(1− ε)n, for some ε > 0, then every set of at most 6 vertices in G has a common neighbour.
Furthermore, for every sufficiently large sets X, Y ⊆ V (G), we will have e(X, Y ) > 0. This
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allows us to prove, by following the same ideas from the proof of Theorem II, that for
sufficiently small ε > 0, every graph G with δ(G) ≥ (1 − ε)n is such that tc3(G) ≤ 3.
It would be interesting to determine the maximum ε for which this is still true. Bal and
DeBiasio [7] proved that ε ≥ 1/(6e) and they notice that ε cannot be larger than 1/4 (they
in fact generalized this to r colours obtaining the bounds 1/(er!) ≤ ε ≤ 1/(r + 1)). Our
proof, however, does not yield a better value of ε.

The proof of Theorem II was divided into two cases: α(F ) ≥ 3 and α(G) ≤ 2. In order
to generalize Theorem II for r > 3, one could consider the cases α(F ) ≥ r and α(F ) ≤ r−1.
Each of those cases has its own difficulty and it is not clear how to systematically generalize
our arguments in those cases for larger values of r. Notice that our approach to the second
case relied on analysing a construction of Gyárfás, proving a better upper bound than the
one given by Ryser’s conjecture, which for r = 3 corresponds to a theorem of Aharoni [1].
However we did not need to use Aharoni’s result per se and perhaps in order to generalize
our arguments for larger value of r one can also avoid Ryser’s conjecture.
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Chapter 4

Tiling Edge-coloured Complete Graphs

4.1 Introduction

A conjecture of Lehel states that the vertices of any 2-edge-coloured complete graph can
be partitioned into two monochromatic cycles of different colours. Here, single vertices and
edges are considered cycles. This conjecture first appeared in [6], where it was also proved
for some special types of colourings of Kn. Łuczak, Rödl and Szemerédi [83] proved Lehel’s
conjecture for sufficiently large n using the regularity method. Allen [2] gave an alternative
proof, with a better bound on n. Finally, Bessy and Thomassé [11] proved Lehel’s conjecture
for all integers n ≥ 1.

For colourings with more colours, Erdős, Gyárfás and Pyber [42] proved that the vertices
of every r-edge-coloured complete graph on n vertices can be partitioned into O(r2 log r)

monochromatic cycles. They further conjectured that r cycles should be enough. The cur-
rently best-known upper bound is due to Gyárfás, Ruszinkó, Sárközy and Szemerédi [55],
who showed that O(r log r) cycles suffice. However, the conjecture was refuted by Pokrovskiy [89],
who showed that, for every r ≥ 3, there exist infinitely many r-edge-coloured complete
graphs which cannot be vertex-partitioned into r monochromatic cycles. Nevertheless,
Pokrovskiy conjectured that in every r-edge-coloured complete graph one can find r vertex-
disjoint monochromatic cycles which cover all but at most cr vertices for some cr ≥ 1 only
depending on r (in his counterexample cr = 1 is possible).

In this chapter, we study similar problems in which we are given a family of graphs F and
an edge-coloured complete graph Kn and our goal is to partition V (Kn) into monochromatic
copies of graphs from F . All families of graphs F we consider here are of the form F =

{F1, F2, . . .}, where Fi is a graph on i vertices for every i ∈ N. We call such a family a
sequence of graphs. A collection H of vertex-disjoint subgraphs of a graph G is an F-tiling
of G if H consists of copies of graphs from F with V (G) =

⋃
H∈H V (H). If G is edge-

coloured, we say that H is monochromatic if every H ∈ H is monochromatic. Let τr(F , n)

The work described in this chapter was developed in a joint project with Jan Corsten.
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be the minimum t ∈ N such that for every r-edge-coloured Kn, there is a monochromatic
F -tiling of size at most t. We define the tiling number of F as

τr(F) = sup
n∈N

τr(F , n).

Using this notation, the results of Pokrovskiy [89] and of Gyárfás, Ruszinkó, Sárközy and
Szemerédi [55] mentioned above imply that r + 1 ≤ τr(Fcycles) = O(r log r), where Fcycles is
the family of cycles. Note that, in general, it is not clear at all that τr(F) is finite and it is
a natural question to ask for which families this is the case.

The study of such tiling problems for general families of graphs was initiated by Grin-
shpun and Sárközy [53]. The maximum degree ∆(F) of a sequence of graphs F is given
by supF∈F ∆(F ), where ∆(F ) is the maximum degree of F . We denote by F∆ the collec-
tion of all sequences of graphs F with ∆(F) ≤ ∆. Grinshpun and Sárközy proved that
τ2(F) ≤ 2O(∆ log∆) for all F ∈ F∆. In particular, τ2(F) is finite whenever ∆(F) is finite.
They also proved that τ2(F) ≤ 2O(∆) for every sequence of bipartite graphs F of maximum
degree at most ∆, and showed that this is best possible up to a constant factor in the
exponent (see also Section 4.8 for a more detailed discussion on the lower bound).

Sárközy [95] further proved that τ2(Fk-cycles) = O(k2 log k), where Fk-cycles denotes the
family of kth power of cycles1. For more than two colours less is known. Answering a
question of Elekes, Soukup, Soukup and Szentmiklóssy [37], Bustamante, Corsten, Frankl,
Pokrovskiy, and Skokan [21] proved that τr(Fk-cycles) is finite for all r, k ∈ N. Grinshpun and
Sárközy [53] conjectured that the same should be true for all families of graphs of bounded
degree with an exponential bound.

Conjecture 4.1.1 (Grinshpun-Sárközy [53], 2016). For every r,∆ ∈ N and F ∈ F∆, τr(F)

is finite. Moreover, there is some Cr > 0 such that τr(F) ≤ exp(∆Cr).

The main theorem in this chapter shows that τr(F) is indeed finite. For a given positive
integer k, we denote by expk the kth-composition of the exponential function.

Theorem III. There is an absolute constant K > 0 such that for all integers r,∆ ≥ 2, we
have

τr(F) ≤ exp2
(
rKr∆3)

,

for every sequence F = {Fi : i ∈ N} of graphs with |Fi| = i and ∆(Fi) ≤ ∆, for each i ∈ N.

In order to prove Theorem III, we shall prove an absorption lemma (see Lemma 4.5.1)
whose proof relies on a density increment argument. This is responsible for the double
exponential bound in Theorem III.

1The k-th power of a graph H is the graph obtained from H by adding an edge between any two vertices
at distance at most k
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The chapter is organized as follows. In Section 4.2, we present an overview of the proof
of Theorem III and the proof of our absorption lemma. In Section 4.3 we collect a few
lemmas regarding regular pairs and regular cylinders that we shall use repeatedly in later
sections. The proof of our absorption lemma and Theorem III can be found in Section 4.5
and Section 4.6, respectively. Finally, we finish the chapter with some concluding remarks
in Section 4.8.

4.2 Proof overview

The proof of Theorem III, similarly to the proof of the two colour result of Grinshpun and
Sárközy [53], combines ideas from the absorption method as in the original paper of Erdős,
Gyárfás and Pyber [42] with some modern approaches involving the blow-up lemma and the
weak regularity lemma of Duke, Lefmann and Rödl [35]. However, in order to extend these
ideas to more colours, we need to prove a significantly more complicated absorption lemma,
requiring new ideas involving a density increment argument.

Our absorption lemma (Lemma 4.5.1) states that if we have k := ∆ + 2 disjoint sets
of vertices V1, . . . , Vk with |Vi| ≥ 2|V1| for all i = 2, . . . , k such that every vertex in V1

belongs to at least δ|V2| · · · |Vk| monochromatic k-cliques transversal2 in (V1, . . . , Vk), then it
is possible to cover the vertices in V1 with a constant number (depending on δ, r and ∆) of
monochromatic vertex disjoint copies of graphs from F . Furthermore, we can choose such
a covering using no more than |V1| vertices in each V2, . . . , Vk.

To deduce Theorem III from the absorption lemma, we need to partition V (Kn) in
a similar fashion as in [21]: first we find k − 1 monochromatic super-regular cylinders
Z1, . . . , Zk−1 covering a positive proportion of the vertices of Kn (see Section 4.3 for the
definition of super-regular cylinders). Then we apply a result of Fox and Sudakov [46] to
greedily cover with few disjoint monochromatic copies of graphs from F almost all of the
vertices in V (Kn) \ (Z1 ∪ · · · ∪ Zk−1), leaving uncovered a set R of size much smaller than
|Zk−1| (see Proposition 4.4.2).

Now we split R into two sets: the set R1 of vertices belonging to at least δ|Z1| · · · |Zk−1|
monochromatic k-cliques transversal in (R,Z1, . . . , Zk−1), and the set R2 = R \ R1. Using
our absorption lemma we can cover the vertices in R1 using no more than |R1| vertices of
each of the cylinders Z1, . . . , Zk−1. For each i = 1, . . . , k − 1, let Z ′

i be the set of vertices
in Zi that has not been used to cover R1. Since we |R1| is significantly smaller than |Zi|,
it follows that each Z ′

i is still a super-regular cylinder. Now, if the set R2 was empty, then
we would be done. Indeed, a consequence of the blow-up lemma (Lemma 4.3.3) guarantees
that we can cover each of the cylinders Z ′

1, . . . , Z
′
k−1 with k + 1 copies of vertex disjoint

monochromatic graphs from F .

2A k-clique is transversal in (V1, . . . , Vk) if it contains one vertex in each one of the sets V1, . . . , Vk.
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So let us consider the case where R2 is non-empty. In this case, we repeat the process
above. This time we first find a reasonably large regular cylinder Zk in R2, then we greedily
cover most of the vertices in R2 \Zk and apply the absorption lemma to those vertices that
have not yet been covered and belong to many monochromatic k-cliques transversal in R2

and k− 1 of the cylinders Z ′
1, . . . , Z

′
k−1, Zk. The set of leftover vertices, which we denote by

R3, is either empty (and in this case we are done, as above) or is non-empty, in which case
we repeat the process to cover R3. Finally, using a lemma from [21] (see Lemma 4.6.1) and
Ramsey’s theorem, we can show that this process must stop after Rr(Kk) many iterations,
where Rr(Kk) denotes the r-colour Ramsey number of the graph Kk.

In order to prove the absorption lemma, we employ a density increment argument. This
is the most difficult part of the proof and the key new idea in this result. First, we partition
V1 into r sets V

(1)
1 , . . . , V

(r)
1 so that for every j ∈ [r], every v ∈ V

(j)
i is incident to at least

d/r · |V2| · · · |Vk| monochromatic cliques of colour j which are transversal in (V1, . . . , Vk). We
will cover each of these sets separately, making sure not to repeat vertices. Let us illustrate
how to cover V

(1)
1 .

We start by finding a large k-cylinder Z = (U1, . . . , Uk) with U1 ⊂ V
(1)
1 , U2 ⊂ V2, . . . Uk ⊂

Vk which is super-regular in colour 1. We shall use Z as an absorber at the end of the proof to
cover any small set of leftovers. Next, we greedily cover most of V (1)

1 \U1 by monochromatic
copies of F until the set of uncovered vertices R has size much smaller then |U1|. To cover
the set R, we will find a partition R = S ∪ T2 ∪ . . . ∪ Tk, where each vertex in S belongs to
many monochromatic k-cliques of colour 1 which are transversal in (S, U2, . . . , Uk) (allowing
S to be absorbed into the cylinder Z at the end of the proof) and each vertex in Ti, for
i ∈ {2, . . . , k}, belongs to at least (δ + η)|V2| · · · |Vi−1||Ui| · · · |Uk| monochromatic k-cliques
transversal in (Ti, V2, . . . , Vi, Ui+1, . . . , Uk), for some η ≪ δ.

To cover the vertices in each Ti, with i ∈ {2, . . . , k}, we repeat the argument with
(V1, . . . , Vk) replaced by (Ti, V2, . . . , Vi, Ui+1, . . . , Uk) and δ replaced by δ + η. This is our
density increment argument. Since every time we repeat the argument we significantly
increase the density of k-cliques, we can bound the number of required repetitions in terms
of the initial density of k-cliques.

While covering each of the sets T2, . . . , Tk, we shall guarantee that the set of vertices
Xi ⊆ Ui that we use to cover them has size much smaller than |Ui| for all i = 2, . . . , k. This
way, the cylinder Z ′ = (U1 ∪ S, U2 \X2, . . . , Uk \Xk) will be super-regular in colour 1 and
thus we can cover Z ′ using the blow-up lemma. Repeating this for every colour j ∈ [r], we
get a covering of V1 with Oδ,r,∆(1) many monochromatic disjoint copies of graphs from F .
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4.3 Regularity

In this section, we will gather all the notations and results related to the classical regularity
technique which we require for the proof. We start by introducing some relevant notations.
Let G = (V1, V2, E) be a bipartite graph with parts V1 and V2. For any Ui ⊆ Vi, i = 1, 2,
the density of the pair (U1, U2) in G is given by

d(U1, U2) =
e(U1, U2)

|U1||U2|
.

We say that G (or the pair (V1, V2)) is ε-regular if for all Ui ⊆ Vi with |Ui| ≥ ε|Vi|, i = 1, 2,
we have

|d(U1, U2)− d(V1, V2)| ≤ ε.

If additionally we have d(V1, V2) ≥ d and deg(v, Vi) ≥ δ|Vi| for all v ∈ V3−i, i = 1, 2, then we
say that G (or (V1, V2)) is (ε, d, δ)-super-regular. We often say that G is (ϵ, d)-super-regular
instead of (ϵ, d, d)-super-regular.

We begin with some simple facts about super-regular pairs. The first one is known as the
slicing lemma and roughly says that if we take a large induced subgraph in a dense regular
pair we still get a dense regular pair. Its proof is straightforward from the definition of a
regular pair.

Lemma 4.3.1 (Slicing lemma). Let β > ε > 0, d ∈ [0, 1] and let (V1, V2) be an (ϵ, d, 0)-
super-regular pair. Then any pair (U1, U2) with |Ui| ≥ β|Vi| and Ui ⊆ Vi, i = 1, 2, is
(ϵ′, d′, 0)-super-regular with ϵ′ = max{ϵ/β, 2ϵ} and d′ = d− ϵ.

The following lemma essentially says that after removing few vertices from a super-
regular pair and adding few new vertices with large degree, we still have a super-regular
pair. The reader can find a proof of it in Section 4.7.

Lemma 4.3.2. Let 0 < ε < 1/2 and let d, δ ∈ [0, 1] so that δ ≥ 4ε. Let (V1, V2) be an
(ϵ, d, δ)-super-regular pair in a graph G. Let Xi ⊆ Vi for i ∈ {1, 2}, and let Y1, Y2 be disjoint
subsets of V (G) \ (V1 ∪ V2). Suppose that for each i ∈ {1, 2} we have |Xi|, |Yi| ≤ ε2|Vi|
and deg(v, Vi) ≥ δ|Vi| for every v ∈ Y3−i. Then the pair ((V1 \X1) ∪ Y1, (V2 \X2) ∪ Y2) is
(8ϵ, d− 8ε, δ/2)-super-regular.

Let k ≥ 2 be an integer and let G be a graph. Given disjoint sets of vertices V1, . . . , Vk ⊆
V (G), we call Z = (V1, . . . , Vk) a k-cylinder and often identify it with the induced k-partite
subgraph G[V1, . . . , Vk]. We write Vi(Z) = Vi for every i ∈ [k]. We say that Z is ε-balanced
if

max
i∈[k]

|Vi(Z)| ≤ (1 + ε)min
i∈[k]

|Vi(Z)|
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and balanced if it is 0-balanced. Furthermore, we say that Z is ϵ-regular if all the
(
k
2

)
pairs

(Vi, Vj) are ϵ-regular. If G is an r-edge-coloured graph and i ∈ [r], we say that Z is ε-regular
in colour i if it is ε-regular in Gi, the graph consisting of all edges of G with colour i.
Similarly, we define (ε, d)-regular and (ϵ, d, δ)-super-regular cylinders.

As sketched in Section 4.2, we will use super-regular cylinders as absorbers. The following
lemma, which Grinshpun and Sárközy [53] deduced from the blow-up lemma [73, 72, 96]
and the Hajnal-Szemerédi theorem [56],3 allows us to do this.

Lemma 4.3.3. There is a constant K, such that for all 0 ≤ δ ≤ d ≤ 1/2, ∆ ∈ N, k = ∆+2,
0 < ε ≤ (δd∆)

K, and F ∈ F∆, the following is true for every (ε, d, δ)-super-regular k-cylinder
Z = (V1, . . . , Vk).

(i) If Z is ε-balanced, then its vertices can be partitioned into at most ∆ + 3 copies of
graphs from F .

(ii) If |Vi| ≥ |V1| for all i = 2, . . . , k, then there is a copy of a graph from F covering V1

and at most |V1| vertices of each of V2, . . . , Vk.

It is important in the proof of Theorem III that we can find super-regular k-cylinders
which cover linearly many vertices. The existence of such a pair follows readily from the
regularity lemma. Conlon and Fox [27, Lemma 5.3] used the weak regularity lemma of Duke,
Lefmann, and Rödl [35] to obtain better constants. We shall use the following coloured
version of their result, the proof of which is very similar and can be found in Section 4.7.
See also [53, Lemma 2] for a 2-coloured version which follows readily from the non-coloured
version.

Lemma 4.3.4. Let k, r ≥ 2, 0 < ε < 1/(rk) and γ = εr
8rkε−5. Then every r-edge-coloured

complete graph on n ≥ 1/γ vertices contains, in one of the colours, a balanced (ε, 1/2r)-
super-regular k-cylinder Z = (U1, . . . , Uk) with parts of size at least γn.

The following lemma further guarantees that this remains possible as long as the host-
graph has many k-cliques. It is also a straightforward consequence of the weak regularity
lemma of Duke, Lefmann, and Rödl and we provide a proof in Section 4.7.

Lemma 4.3.5. Let k ≥ 2, and let 0 < ε < 1/2 and 2kε ≤ d ≤ 1. Let γ = εk
2ε−12. Suppose

that G is a k-partite graph with parts V1, . . . , Vk with at least d|V1| · · · |Vk| cliques of size k.
Then there is some γ′ ∈ [γ, ε] and an (ε, d/2)-super-regular k-cylinder Z = (U1, . . . , Uk) in
G with Ui ⊂ Vi and |Ui| = ⌊γ′|Vi|⌋ for every i ∈ [k].

3The second part of the theorem is not explicitly stated in [53] but follows readily from the blow-up
lemma and the Hajnal-Szemerédi theorem.
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4.4 Greedily covering most vertices

In the proof, we will use the following theorem of Fox and Sudakov [46] about r-colour
Ramsey numbers of bounded-degree graphs.

Theorem 4.4.1 ([46, Theorem 4.3]). Let k,∆, r, n ∈ N with r ≥ 2 and let H1, . . . , Hr be
k-partite graphs with n vertices and maximum degree at most ∆. Then

R(H1, . . . , Hr) ≤ r2rk∆n.

Recall that F∆ denotes the collection of all sequences of graphs F with ∆(F ) ≤ ∆,
for every F ∈ F , and let F∆,k be the collection of sequences F ∈ F∆ such that F is k-
partite, for every F ∈ F . Note that F∆ = F∆,∆+1. The following consequence of the
previous theorem states that, for each F ∈ Fk,∆, we can cover almost all vertices of Kn with
monochromatic copies of graphs from F . The proof basically follows by greedily taking a
large monochromatic copy of a graph in F covering vertices that has not been covered yet.

Proposition 4.4.2. Let ∆, k, r ∈ N, let γ > 0 and let C = 4r2rk∆ log(1/γ). Then, for every
F ∈ F∆,k and every r-edge-coloured Kn with n ≥ r−2rk∆, it is possible to cover all but γn
vertices of Kn with at most C vertex-disjoint monochromatic copies of graphs from F .

Proof. Let F = {F1, F2, . . .} ∈ F∆,k, t = r−2rk∆, C = (4/t) log(1/γ) and n ≥ r−2rk∆.
Consider n1 = ⌊tn⌋ ≥ tn/2. By Theorem 4.4.1, since Rr(Fn1) ≤ t−1n1 ≤ n, there is a
monochromatic copy of Fn1 in Kn. Let H1 be such copy and let V1 = V \ V (H1). Note that
|V1| = n− n1 ≤ (1− t/2)n.

Suppose that we have inductively found vertex-disjoint monochromatic graphs H1, . . . , Hi ⊆
Kn that are copies of graphs in F and such that Vi := V (Kn) \ (V (H1) ∪ · · · ∪ V (Hi))

has at most (1− t/2)in vertices. If |Vi| ≤ 2/t, then we cover the vertices in Vi with sin-
gle vertices and stop the process. Therefore, suppose that |Vi| ≥ 2/t. Then let ni+1 =

⌊t|Vi|⌋ ≥ t|Vi|/2. Again by Theorem 4.4.1, since Rr(Fni+1
) ≤ t−1ni+1 ≤ |Vi|, there is a

monochromatic copy of Fni+1
contained in Vi. Let Hi+1 be such a copy. Thus the set

Vi+1 := V (Kn) \ (V (H1) ∪ · · · ∪ V (Hi+1)) has size

|Vi+1| = |Vi| − ni+1 ≤ (1− t/2)|Vi| ≤ (1− t/2)i+1n.

Now, after C/2 steps, we have covered all but at most

(1− t/2)C/2n ≤ e−(t/4)Cn ≤ γn

vertices of Kn using at most C/2+ 2/t ≤ C vertex-disjoint monochromatic copies of graphs
from F .
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In particular, by choosing γ = 1/n, we get the following corollary.

Corollary 4.4.3. Let ∆, k, r ∈ N and let C = 4r2rk∆ log n. Then, for every F ∈ F∆,k and
every r-edge-coloured Kn, there is a collection of at most C monochromatic vertex-disjoint
copies of graphs from F whose vertex-sets partition V (G).

4.5 The Absorption Lemma

Given a graph G and U ⊆ V , recall that we denote by G[U ] the subgraph of G induced
by U . Given disjoint sets V1, . . . , Vk ⊆ V (G), with k ≥ 2, we denote by G[V1, . . . , Vk] the
subgraph of G with vertex set V1 ∪ · · · ∪ Vk containing only edges that are between two of
the sets V1, . . . , Vk. Furthermore, for each v ∈ V1, let

degG(v, V2, . . . , Vk) = |{(v2, . . . , vk) ∈ V2 × · · · × Vk : {v, v2, . . . , vk} is a k-clique in G}|

and
dG(v, V2, . . . , Vk) :=

degG(v, V2, . . . , Vk)

|V2| · · · |Vk|
.

If additionally, we have an edge colouring χ : E(G) → [r] of E(G), then we denote by
degG,i(v, V2, . . . , Vk) = degGi

(v, V2, . . . , Vk), where Gi is the graph with vertex set V (G)

consisting of the edges of G with colour i. We define dG,i(v, V2, . . . , Vk) similarly and denote
dG,I(v, V2, . . . , Vk) :=

∑
i∈I dG,i(v, V2, . . . , Vk), for each I ⊆ [r]. If the graph G is clear from

context, we may drop the G in the subscript.
Given a set V , we denote by K(V ) the complete graph with vertex set V . Given dis-

joint sets V1, . . . , Vk, we denote by K(V1, . . . , Vk) the complete k-partite graph with parts
V1, . . . , Vk. Let G = K(V1)∪K(V1, . . . , Vk) and let H be a collection of subgraphs of G. We
denote by ∪H the graph with edge set

⋃
H∈H E(H) and vertex set V (H) :=

⋃
H∈H V (H).

We say that H canonically covers V1 if V1 ⊆ V (H) and

|V (H) ∩ Vi| ≤ |V (H) ∩ V1|

for all i ∈ [2, k].4 The following lemma is the key ingredient of the proof of Theorem III.

Lemma 4.5.1 (Absorption Lemma). There is some absolute constant K > 0, such that the
following is true for all d > 0, all integers ∆, r ≥ 2 and for every F ∈ F∆. Let k = ∆ + 2

and let
C = exp2

((r
d

)K∆
)
.

Consider k disjoint sets V1, . . . , Vk with |Vi| ≥ 4|V1|, for all i ∈ [2, k], and let G =

K(V1)∪K(V1, . . . , Vk). Suppose that χ : E(G) → [r] is a colouring in which for every v ∈ V1

4Here, we denote by [i, j] the set of integers z with i ≤ z ≤ j.
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we have d[r](v, V2, . . . , Vk) ≥ d. Then, there is a collection of at most C vertex-disjoint
monochromatic copies of graphs from F in G which canonically covers V1.

The edges of G inside V1 will only be used to find copies from F which lie entirely in V1

in order to greedily cover most vertices of V1. The difficult part is finding monochromatic
copies in K(V1, . . . , Vk) covering the remaining vertices. To do so, we will reduce the problem
to only one colour within K(V1, . . . , Vk) and then deduce Lemma 4.5.1 from the following
lemma.

Lemma 4.5.2. There is some absolute constant K > 0, such that the following is true for
all d > 0, all integers ∆, r ≥ 2 and for every F ∈ F∆. Let k = ∆+ 2 and let

C = exp2

((r
d

)K∆
)
.

Consider k disjoint sets V1, . . . , Vk with |Vi| ≥ 2|V1|, for all i ∈ [2, k] and let G =

K(V1) ∪ K(V1, . . . , Vk). Suppose that χ : E(G) → [r] is a colouring in which for every
v ∈ V1 we have d1(v, V2, . . . , Vk) ≥ d. Then, there is a collection of at most C vertex-disjoint
monochromatic copies of graphs from F in G which canonically covers V1.

Lemma 4.5.1 follows routinely from Lemma 4.5.2.

Proof of Lemma 4.5.1. Let K ′ be the absolute constant from Lemma 4.5.2 and let d′ =

d/(2r), γ = d′/(kr), and C ′ = exp2
(
(r/d′)K

′∆
)
. Partition V1 = U1 ∪ . . . ∪ Ur such that for

each j ∈ [r] we have dj(v, V2, . . . , Vk) ≥ 2d′, for all v ∈ Uj. We will inductively cover Uj, for
each j ∈ [k].

Let us first consider the base case, i.e., j = 1. From Proposition 4.4.2, there is a
collection H′ of at most5 C ′ disjoint monochromatic copies of graphs from F covering all
but γ|U1| ≤ γ|V1| vertices of G[U1]. Let V ′

1 = U1 \ V (H′). By applying Lemma 4.5.2
to G′ := G[V ′

1 ∪ V2 ∪ · · · ∪ Vk] (with d′), there is a collection H′′ of at most C ′ disjoint
monochromatic copies of graphs from F in G′ which canonically covers V ′

1 . Let H1 = H′∪H′′.
Note that H1 canonically covers U1 and covers at most γ|V1| vertices of Vi, for each i ∈ [2, k].

Now consider j ≥ 2 and suppose that we have found a collection Hj−1 of at most
2(j − 1)C ′ disjoint monochromatic copies of graphs from F in G that canonically covers
U1 ∪ · · · ∪ Uj−1 and covers at most (j − 1)γ|V1| vertices of Vi, for each i ∈ [2, k]. From
Proposition 4.4.2, there is a collection H′ of at most C ′ disjoint monochromatic copies of
graphs from F covering all but γ|Uj| ≤ γ|V1| vertices of G[Uj]. Let V ′

1 = Uj \ V (H′) and let
V ′
i := Vi \ V (Hj−1), for each i ∈ [2, k]. Note that

|V ′
i | ≥ |Vi| − (j − 1)γ|V1| ≥ 4|V1| − rγ|Vi| ≥ 2|V1| ≥ 2|V ′

1 |.

5Note that the constant from Proposition 4.4.2 is smaller than C ′.
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Also, for each v ∈ V ′
1 , we have

degj(v, V
′
2 , . . . , V

′
k) ≥ degj(v, V2, . . . , Vk)− k(j − 1)γ|V2| · · · |Vk|.

Consequently,

dj(v, V
′
2 , . . . , V

′
k) ≥ dj(v, V2, . . . , Vk)− krγ ≥ 2d′ − d′ ≥ d′.

Therefore, we can apply Lemma 4.5.2 to G′ := G[V ′
1 ∪ · · · ∪ V ′

k ] and get a collection H′′ of
at most C ′ disjoint monochromatic copies of graphs from F in G that canonically covers
V ′
1 . In particular, H′′ covers at most |V ′

1 | ≤ γ|V1| vertices of Vi, for each i ∈ [2, k]. Let
Hj = Hj−1 ∪ H′ ∪ H′′. Then Hj is a collection of at most 2jC ′ disjoint monochromatic
copies of graphs from F in G that canonically covers U1∪ · · · ∪Uj and covers at most jγ|V1|
vertices of Vi, for each i ∈ [2, k].

In the end, we have found a collection Hr of disjoint monochromatic copies of graphs
from F that canonically covers V1. Furthermore, Hr has at most 2rC ′ ≤ exp2

(
(r/d)4K

′∆
)

graphs, finishing the proof.

The proof of Lemma 4.5.2 is quite long and technical (see Section 4.2 for a sketch), and
we will therefore break it up into smaller claims. We use □ to denote the end of the proof of
a claim and to denote the end of the main proof.

Proof of Lemma 4.5.2. Let ∆ and r be given positive integers, k = ∆+2 and F ∈ F∆. For
each d > 0, let C(d) be the smallest non-negative integer C such that the following holds:

(⋆) Let V1, . . . , Vk be disjoint sets with |Vi| ≥ 2|V1| for all i ∈ [2, k], let
H ⊂ K(V1, . . . , Vk) be a graph with dH(v, V2, . . . , Vk) ≥ d for every v ∈ V1 and
G = K(V1) ∪ H. Let χ : E(G) → [r] be a colouring such that every edge in
E(H) receives colour 1. Then, there is a collection H of at most C vertex-disjoint
monochromatic copies of graphs from F contained in G that canonically covers
V1.

Note that C(d) is a decreasing function in d, and that C(d) = 0 for every d > 1. Our goal
is to show that C(d) is finite for every d > 0. We will do this by establishing a recursive
upper bound (see Equation (4.1)).

Let us first define all relevant constants used in the proof. Let K ′ be the universal
constant given by Lemma 4.3.3 and fix some 0 < d ≤ 1. Define

ε =

(
d

100

)2K′∆

, γ = 1
r
· εk2ε−12

and η =
dγk

2
.
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It might be of benefit for the reader to have in mind that those constants obey the following
hierarchy:

1 ≥ d ≫ ε ≫ γ ≫ η > 0.

Furthermore, define

P (d) := 4r4rk
2

log(2/η2) + 1.

We will prove that for every d′ ≥ d we have

C(d′) ≤ P (d) + kC (d′ + η) . (4.1)

Since C(d′) = 0 if d′ > 1, it follows by iterating that C(d) ≤ (2k)2/ηP (d). Furthermore, we
have

2/η ≤ γ−2k ≤ ε−2rk3ε−12 ≤ exp
(
rε−20

)
≤ exp

(
(r/d)400K

′∆
)
.

It follows that

C(d) ≤ exp2
(
(r/d)500K

′∆
)
P (d) ≤ exp2

(
(r/d)1000K

′∆
)

concluding the proof of Lemma 4.5.2.

It remains to prove Equation (4.1). Let d′ ≥ d be fixed now and let V1, . . . , Vk, G and
χ : E(G) → [r] be as in (⋆) (with d′ playing the role of d). By assumption, there are at
least d|V1||V2| · · · |Vk| cliques of size k in G[V1, V2, . . . , Vk] each of which is monochromatic in
colour 1. Since γ = εk

2ε−12 and d ≥ 2kε, we can apply Lemma 4.3.5 to get some γ′ ≥ γ and a
k-cylinder Z = (U1, . . . , Uk) which is (ε, d/2)-super-regular with Ui ⊂ Vi and |Ui| = ⌊γ′|Vi|⌋
for every i ∈ [k]. Without loss of generality we may assume that γ|Vi| is an integer for
every i ∈ [k] and that we have γ′ = γ. By Proposition 4.4.2, there is a collection HR of at
most 4r4rk

2
log(2/η2) vertex-disjoint monochromatic copies of graphs from F contained in

K(V1 \ U1) covering all vertices in V1 \ U1 except for a set R with |R| ≤ η2|V1|. We remark
here that

|R| ≤ η/(4k) · |U1| ≤ ε2|U1|. (4.2)

It remains now to cover the vertices in R. For each i ∈ [k], let

di =
1− γi

1− γk
· d′ (4.3)

55



4.5. THE ABSORPTION LEMMA

and note that (1− γ)d′ ≤ d1 ≤ · · · ≤ dk = d′. For i ∈ [2, k], let Ṽi = Vi \ Ui and define

Si = {v ∈ R : d(v, V2, . . . , Vi−1, Vi, Ui+1, . . . , Uk) ≥ di},
Ti = {v ∈ R : d(v, V2, . . . , Vi−1, Ṽi, Ui+1, . . . , Uk) > d′ + 2η}.

We will prove Equation (4.1) using a series of claims, which we shall prove at the end.

Claim 4.5.3. We have R = S1 ∪ T2 ∪ . . . ∪ Tk.

Without loss of generality, we may assume that S1, T2, . . . , Tk are pairwise disjoint (more
formally, we can define T ′

i := Ti \ (S1 ∪ T2 ∪ . . . ∪ Ti−1) for all i ∈ [2, k] and continue the
proof with these sets). Our goal now is to cover each of the sets S1, T2, . . . , Tk one by one
using the following claims.

Claim 4.5.4. For every i ∈ [2, k] and every set A ⊆ V (G) \ Ti with |A ∩ Vs| ≤ |R| for all
s ∈ [2, k], there is a collection Hi of at most C(d′ + η) monochromatic disjoint copies of
graphs from F in G, such that

(i) V (Hi) ∩ V1 = Ti,

(ii) V (Hi) ∩ A = ∅, and

(iii) |V (Hi) ∩ Vj| ≤ |Ti| for all j ∈ [2, k].

Claim 4.5.5. For every set A ⊆ V (G)\ (S1∪U1) with |A∩Vs| ≤ |R| for all s ∈ [2, k], there
is a monochromatic copy H1 of a graph from F in G, such that

(i) V (H1) ∩ V1 = S1 ∪ U1,

(ii) V (H1) ∩ A = ∅ and

(iii) |V (H1) ∩ Vj| ≤ |S1 ∪ U1| for all j ∈ [2, k].

With these claims at hand, we can now prove Equation (4.1). First, we apply Claim 4.5.4
repeatedly to get collections H2, . . . ,Hk of at most C(d′+η) disjoint monochromatic copies of
graphs from F that canonically covers T2, . . . , Tk, respectively, as follows. Let i ∈ {2, . . . , k}
and suppose we have constructed H2, . . . ,Hi−1. Let Ai := V (H2) ∪ . . . ∪ V (Hi−1) and note
that |Ai ∩ Vs| ≤ |T2| + · · · + |Ti−1| ≤ |R| for all s ∈ [2, k]. Apply now Claim 4.5.4 for i and
A = Ai to get the desired collection Hi.

Next, we apply Claim 4.5.5 with A = V (H2) ∪ . . . ∪ V (Hk) to get a copy H1 of a graph
from F with the desired properties. Note that, similarly as above, we have |A∩Vs| ≤ |R| for
all s ∈ [2, k]. By construction V (H1), V (H2), . . . , V (Hk) and V (HR) are disjoint and cover
V1. Moreover, for every s ∈ [2, k], we have

|(V (H1) ∪ . . . ∪ V (Hk) ∪ V (HR)) ∩ Vs| ≤ |S1 ∪ U1|+ |T1|+ |T2|+ · · ·+ |Tk|
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≤ |U1 ∪R| ≤ |V1|.

Hence, {H1}∪. . .∪Hk∪HR canonically covers V1. Finally, we have |{H1} ∪ . . . ∪Hk ∪HR| ≤
P (d)+kC

(
d′+η

)
, proving Equation (4.1). It remains now to prove Claims 4.5.3 to 4.5.5.

Proof of Claim 4.5.3. Since Sk = R, it suffices to show Si ⊆ Si−1∪Ti for each i ∈ [2, k]. Let
i ∈ [2, k] and let v ∈ Si \ Si−1. We have

deg(v, V2, . . . , Vi−1, Ṽi, Ui+1, . . . , Uk) =deg(v, V2, . . . , Vi−1, Vi, Ui+1, . . . , Uk)

− deg(v, V2, . . . , Vi−1, Ui, Ui+1, . . . , Uk).

Therefore,

d(v, V2, . . . , Vi−1, Ṽi, Ui+1, . . . , Uk) = d(v, V2, . . . , Vi−1, Vi, Ui+1, . . . , Uk)
|Vi|
|Ṽi|

− d(v, V2, . . . , Vi−1, Ui, Ui+1, . . . , Uk)
|Ui|
|Ṽi|

> di
|Vi|
|Ṽi|

− di−1
|Ui|
|Ṽi|

=
di − γdi−1

1− γ

=
(1− γi)d′ − γ(1− γi−1)d′

(1− γ)(1− γk)

=
d′

1− γk
≥ d′ + 2η,

where we use Equation (4.3) and the definition of η to obtain the last identities. Thus v ∈ Ti

and hence Si ⊆ Si−1 ∪ Ti. □

Proof of Claim 4.5.4. Let V ′
s := Vs \ A for all s ∈ [2, i − 1], Ṽ ′

i := Ṽi \ A and U ′
s := Us \ A

for all s ∈ [i+ 1, k]. Then, by Equation (4.2), we have

|V ′
s | ≥ |Vs| − |R| ≥

(
1− η

4k

)
|Vs| ≥

|Vs|
2

, for s = 2, . . . , i− 1,

|Ṽ ′
i | ≥ |Ṽi| − |R| ≥

(
1− η

4k

)
|Ṽi| ≥

|Ṽi|
2

, and

|U ′
s| ≥ |Us| − |R| ≥

(
1− η

4k

)
|Us| ≥

|Uj|
2

, for s = i+ 1, . . . , k.

In particular, it follows that

|Vs \ V ′
s | ≤ |R| ≤ η

4k
|Vs| ≤

η

2k
|V ′

s |, for s = 2, . . . , i− 1,

|Vi \ V ′
i | ≤ |R| ≤ η

4k
|Vi| ≤

η

2k
|V ′

i |, and
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|Us \ U ′
s| ≤ |R| ≤ η

4k
|Us| ≤

η

2k
|U ′

s|, for s = i+ 1, . . . , k.

Therefore, for every v ∈ Ti, we have

d(v, V ′
2 , . . . , V

′
i−1, Ṽ

′
i , U

′
i+1, . . . , U

′
k)

≥ d′ + 2η −
i−1∑
s=2

|Vs \ V ′
s |

|V ′
s |

− |Ṽi \ Ṽ ′
i |

|Ṽ ′
i |

−
k∑

s=i+1

|Us \ U ′
s|

|U ′
s|

≥ d′ + 2η − (k − 1)
η

2k
≥ d′ + η.

Hence, by definition of C(d′ + η) (see (⋆)), there exists a collection Hi of at most C(d′ + η)

monochromatic copies of graphs from F that canonically covers Ti in the graph

K(Ti) ∪K(Ti, V
′
2 , . . . , V

′
i−1, Ṽ

′
i , U

′
i+1, . . . , U

′
k).

By construction, Hi satisfies the requirements of the claim (note that (iii) holds since Hi is
a canonical covering). □

Proof of Claim 4.5.5. Let Y1 = S1 and, for each i ∈ [2, k], let Xi = Ui ∩ A. Observe that
|Y1| ≤ |R| ≤ ε2|U1| and |Xi| ≤ |R| ≤ ε2|Ui| for all i ∈ [2, k]. Let U ′

1 = U1 ∪ Y1 and, for each
i ∈ [2, k], let U ′

i := Ui \Xi. We now consider the cylinder Z ′ := (U ′
1, . . . , U

′
k). By definition

of S1, we have d(v, U2, . . . , Uk) ≥ d1 ≥ d/2 and in particular deg(v, Ui) ≥ d/2 · |Ui| for all
v ∈ Y1 and i ∈ [2, k].

Hence, by Lemma 4.3.2, Z ′ is (8ε, d/4)-super-regular. Furthermore, we have |U ′
1| ≤ |U ′

i |
for all i ∈ [k]. Thus, by Lemma 4.3.3, there is a monochromatic copy H1 of a graph from
F in Z that covers U ′

1 = U1 ∪ S1 and at most |U ′
1| vertices from each of U ′

2, . . . , U
′
k. By

construction, this copy satisfies the requirements of the claim. □

This finishes the proof of Lemma 4.5.2.

4.6 Proof of Theorem III

In this section, we will finish the proof of Theorem III. We will make use of the following
lemma from [21] and follow the same proof technique. Since our proof of this lemma is short,
we include it here for completeness. Given a k-uniform hypergraph H, a vertex v ∈ V (H)

and sets B2, . . . , Bk ⊆ V (H), we define

degH(v,B2, . . . , Bk) := |{(v2, . . . , vk) ∈ B2 × . . .×Bk : {v, v2, . . . , vk} ∈ E(H)}| .
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Lemma 4.6.1. Let k and N be positive integers and let H be a k-uniform hypergraph.
Suppose that B1, . . . , BN ⊆ V (H) are non-empty disjoint sets such that for every 1 ≤ i1 <

· · · < ik ≤ N we have

degH(v,Bi2 , . . . , Bik) <

(
N

k

)−1

|Bi2| · · · |Bik |

for all v ∈ Bi1. Then, there exists an independent set {v1, . . . , vN} with vi ∈ Bi, for each
i ∈ [N ].

Proof. For each i ∈ [N ], let vi be chosen uniformly at random from Bi. Let I = {v1, . . . , vN}.
Then we have

P [I is not an independent set] ≤
∑

1≤i1<···<ik≤N

P [{vi1 , . . . , vik} ∈ E(H)]

=
∑

1≤i1<···<ik≤N

1

|Bi1|
∑
v∈B1

P [{vi1 , . . . , vik} ∈ E(H) | vi1 = v]

=
∑

1≤i1<···<ik≤N

1

|Bi1|
∑
v∈B1

degH(v,Bi2 , . . . , Bik)

|Bi2 | · · · |Bik |

<
∑

1≤i1<···<ik≤N

(
N

k

)−1

= 1.

Therefore, there exists an independent set {v1, . . . , vN} with vi ∈ Bi, for each i ∈ [N ].

We are now able to prove Theorem III. The main idea is to find reasonably large cylinders
that are super-regular for one of the colours, greedily cover most of the remaining vertices
using Proposition 4.4.2 and then apply the Absorption Lemma (Lemma 4.5.1) to the set
of remaining vertices that share many monochromatic cliques with the cylinders. We then
iterate this process until no vertices remain. Using Lemma 4.6.1, we will show that a
bounded number of iterations suffices.

Proof of Theorem III. Fix r,∆ ≥ 2, F ∈ F∆. Let G be an r-edge-coloured complete graph
on n vertices. Let

k = ∆+ 2, N = rrk, δ =

(
N

k

)−1

and d =
1

2r
.

In order to use Lemma 4.3.3 and Lemma 4.3.4, respectively, consider the constants

ε = (δd∆)
2K′

and γ = εr
8rkε−5

,
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where K ′ is the universal constant given by Lemma 4.3.3. Consider also the constants

α = ε2 and C1 = 4r2rk∆ log

(
4

αγ

)
in order to use Proposition 4.4.2. Finally, let

C2 = exp2((2r/δ)K̃∆) ≤ exp2
(
r16K̃r∆3

)
,

where K̃ is the universal constant from Lemma 4.5.1, and let K = 20K̃.
We will build a framework consisting of many k-cylinders working as absorbers and

small sets that can be absorbed by them. More precisely, our goal is to define sets with the
following properties (Figure 4.1 should help the reader to understand the structure of those
sets as we define them):

Framework. There are sets Z1, . . . , ZN , Sk−1, . . . , SN , Rk, . . . , RN+1, R′
k, . . . , R

′
N+1

with the following properties.

(F.1) V (G) =
⋃N

i=1 Zi ∪
⋃N

i=k−1 Si ∪
⋃N+1

i=k R′
i is a partition.

(F.2) Z1, . . . , ZN
6 are k-cylinders which are (ε, d)-super-regular in one of the

colours (or empty).

(F.3) Sk−1, . . . , SN are sets of vertices which we will cover greedily by monochro-
matic copies of graphs from F .

(F.4) For each i ∈ [k,N+1], R′
i can be partitioned into sets R′

i,I for all I ∈
(
[i−1]
k−1

)
,

such that, for each I = {i1, . . . , ik−1} ⊆ [i], we have d[r](u, Zi1 , . . . , Zik−1
) ≥

δ for all u ∈ R′
i+1,I .

(F.5) For each k ≤ i < j ≤ N +1, we have Sj ∪Zj ∪R′
j ⊆ Ri and |Ri| ≤ α|Zi−1|.

So let us construct those sets from the framework. First, if n < 1/4γ, then Corollary 4.4.3
gives a covering with at most C2 monochromatic vertex-disjoint copies of graphs from F .
Therefore we may assume that n ≥ 1/4γ. Hence, by applying Lemma 4.3.4 multiple times,
we find k− 1 vertex-disjoint k-cylinders Z1, . . . , Zk−1 such that each of them is (ε, d)-super-
regular in some colour (not necessarily the same) and |Z1| ≥ · · · ≥ |Zk−1| ≥ γn/2. Let
Vk−1 = V (G) \ (Z1 ∪ · · · ∪ Zk−1). By Proposition 4.4.2, there is a collection of at most
C1 monochromatic vertex-disjoint copies from F in Vk−1 covering a set Sk−1 such that the
leftover vertices Rk = Vk−1 \Sk−1 satisfies |Rk| ≤ αγn/2 ≤ α|Zk−1|. Let R′

k ⊆ Rk be the set
of vertices u ∈ Rk with d[r](u, Z1, . . . , Zk−1) ≥ δ. Let R′

k,[k−1] = R′
k and Vk = Rk \R′

k.
Inductively, for each i = k, . . . , N , we do the following. If |Vi| < 1/4γ, we use Corol-

lary 4.4.3 to cover Vi using at most C2 monochromatic vertex-disjoint copies from F and
6We shall identify the cylinders with their vertex-set.
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V (G)

Z1

...

Zk−1

Sk−1

Rk

R′
k

Zk

Sk

Rk+1

R′
k+1

Zk+1

Sk+1

· · ·

RN

R′
N

ZN

SN

RN+1

R′
N+1

VN+1

Figure 4.1: A partition of V (G). Each set in the picture is much smaller than the closest
cylinder Zi to the left.

let Zi = Si = Ri+1 = R′
i+1 = Vi+1 = ∅. Otherwise, we apply Lemma 4.3.4 to find a

monochromatic (ε, d)-super-regular k-cylinder Zi contained in Vi with |Zi| ≥ γ |Vi|. By
Proposition 4.4.2, there is a collection of at most C1 monochromatic, vertex-disjoint copies
from F in Vi \ Zi covering a set Si ⊆ Vi, so that the set of leftover vertices Ri+1 = Vi \ Si

has size at most αγ|Vi| ≤ α |Zi|.
Let R′

i+1 be the set of vertices u in Ri+1 for which there is a set I = {i1, . . . , ik−1} ⊆ [i]

such that d[r](u, Zi1 , . . . , Zik−1
) ≥ δ. Let

R′
i+1 =

⋃
I∈( [i]

k−1)

R′
i+1,I

be a partition of R′
i+1 so that, for each I = {i1, . . . , ik−1} ⊆ [i], we have d[r](u, Zi1 , . . . , Zik−1

) ≥
δ for all u ∈ R′

i+1,I . Finally, let Vi+1 = Ri+1 \R′
i+1.

The following claim implies that these sets partition V (G) as in Item (F.1).

Claim 4.6.2. The set VN+1 is empty.

Proof. Define a k-uniform hypergraph H with vertex set U = Z1 ∪ . . . ∪ ZN ∪ VN+1 and
hyperedges corresponding to monochromatic k-cliques in G[U ]. If VN+1 is non-empty, then
so are Z1, . . . , ZN . Since for each i = k, . . . , N we have Zi ⊆ Ri\R′

i and VN+1 = RN+1\R′
N+1,

it follows that H satisfies the hypothesis of Lemma 4.6.1. Therefore, there is an independent
set {v1, . . . , vN+1} in H of size N +1. On the other hand, since N ≥ Rr(Kk), it follows that
the set {v1, . . . , vN+1} has a monochromatic k-clique in G[U ], which is a contradiction. □

The vertices in Sk−1 ∪ · · · ∪ SN are already covered by monochromatic copies of graphs
from F . Our goal now is to cover the sets R′

k, . . . , R
′
N+1 using Lemma 4.5.1 without using
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too many vertices from the cylinders Z1, . . . , ZN . This way, we can cover the remaining
vertices in Z1 ∪ · · · ∪ ZN using Lemma 4.3.3.

Claim 4.6.3. Let i ∈ {k, . . . , N + 1} and I = {i2, . . . , ik} ⊆ [i − 1]. Let A ⊆ V (G) \ Ri,I

be a set with |A ∩ Zj| ≤ α |Zj| for each j ∈ I. Then there is a collection of at most C2

monochromatic vertex-disjoint copies of graphs from F in

G′ = K(R′
i,I) ∪K(R′

i,I , Zi2 , . . . , Zik)

which are disjoint from A and canonically cover R′
i,I .

Proof. Let Ṽ1 = R′
i,I and for j ∈ [k] \ {1}, let Ṽj = Zij \ A. Note that |Ṽj| ≥ 4|Ṽ1| for every

j ∈ [k] \ {1} and

deg[r](v, Ṽ2, . . . , Ṽk) ≥ deg[r](v, Zi2 , . . . , Zik)− kα|Zi2| · · · |Zik |
≥(δ − kα)|Zi2| · · · |Zik |
≥δ/2 · |Zi2| · · · |Zik |

for every v ∈ Ṽ1. Hence, by Lemma 4.5.1, there is a collection of at most C2 vertex-disjoint
copies from F in Ṽ1 ∪ . . . ∪ Ṽk that canonically covers Ṽ1, finishing the proof. □

We will use Claim 4.6.3 now to cover
⋃N+1

i=k R′
i. Let ≺ be a linear order on I :={

(i, I) : i ∈ [k,N + 1], I ∈
(
[i−1]
k−1

)}
. Let (i, I) ∈ I and suppose that, for all (i′, I ′) ∈ I

with (i′, I ′) ≺ (i, I), we have already constructed a family Hi′.I′ of monochromatic copies
of graphs from F which canonically covers R′

i′,I′ in K(R′
i′,I′) ∪K(R′

i′,I′ , Zi′2
, . . . , Zi′k

), where
I ′ = {i′2, . . . , i′k}, and such that the sets V (Hi′,I′), for (i′, I ′) ≺ (i, I), are disjoint.

Let A =
⋃

(i′,I′)≺(i,I) V (Hi′,I′) be the set of already covered vertices. We claim that

|A ∩ Zj| ≤ α|Zj| (4.4)

for each j ∈ [N ]. Indeed, given some j ∈ [N ], for all (i′, I ′) ∈ I with i′ ≤ j, we have
V (Hi′,I′) ∩ Zj = ∅, since Hi′,I′ canonically covers R′

i′,I′ in K(R′
i′,I′) ∪K(R′

i′,I′ , Zi′2
, . . . , Zi′k

).
Now for all (i′, I ′) ∈ I with i′ > j, we have |V (Hi′,I′) ∩ Zj| ≤ |R′

i′,I′ |, again because Hi,I

canonically covers R′
i′,I′ . Therefore,

|A ∩ Zj| ≤
∑

(i′,I′)≺(i,I)

|V (Hi′,I′) ∩ Zj| ≤
∑

(i′,I′)∈I : i′>j

∣∣R′
i′,I′

∣∣ ≤ |Rj+1| ,

since the sets {R′
i′,I′ : (i′, I ′) ∈ I, i > j} are disjoint subsets of Rj+1. Finally, since

|Rj+1| ≤ α |Zj|, this implies Equation (4.4). In particular, by Claim 4.6.3, there is a
collection Hi,I of monochromatic copies of graphs from F that canonically covers R′

i,I in
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K(R′
i,I) ∪ K(R′

i,I , Zi2 , . . . , Zik), where I = {i2, . . . , ik}, and such that V (Hi,I) is disjoint
from A.

It remains to cover
⋃N

i=1 Zi. Let A :=
⋃

(i,I)∈I V (Hi,I) be the set of vertices covered in
the previous step. Note that, similarly as in Equation (4.4), we have |A ∩ Zj| ≤ α|Zj| for
all j ∈ [N ]. Therefore, by Lemma 4.3.2, the cylinder Z̃j obtained from Zj by removing all
vertices in A is (8ε, d/2)-super-regular and ε-balanced for every j ∈ [N ]. It follows from
Lemma 4.3.3 that, for every j ∈ [N ], there is a collection Hj of at most ∆+3 monochromatic
vertex-disjoint copies of graphs from F contained in Zj covering V (Zj).

In total, the number of monochromatic copies we used to cover V (G) is at most

N · C1 +Nk · C2 +N · (∆ + 3) ≤ 2NkC2

≤ 2rrk
2 · exp2

(
r16K̃r∆3

)
≤ exp2

(
rKr∆3

)
.

This concludes the proof of Theorem III.

4.7 Proofs of the auxiliary lemmas

In this section, we shall prove the lemmas stated in Section 4.3 for which we could not find
a proof in the literature. Their proofs however are standard and not difficult.

Proof of Lemma 4.3.2. Let Ui = (Vi \Xi) ∪ Yi for i ∈ {1, 2}. We will show that (U1, U2) is
(8ε, d− 8ε, δ/2)-super-regular. Let now Zi ⊆ Ui with |Zi| ≥ 8ε|Ui|, and let Z ′

i = Zi \ Yi and
Z ′′

i = Zi ∩ Yi for i ∈ {1, 2}. Note that we have

|Zi| ≥ 8ε|Ui| ≥ ε|Vi|, (4.5)

|Z ′′
i | ≤ |Yi| ≤ ε2|Vi|

(4.5)
≤ ε|Zi| and (4.6)

|Z ′
i| = |Zi| − |Z ′′

i |
(4.6)
≥ (1− ε)|Zi| (4.7)

for both i ∈ {1, 2}. We therefore have

e(Z1, Z2) ≤ e(Z ′
1, Z

′
2) + e(Z ′′

1 , Z2) + e(Z1, Z
′′
2 )

(4.6)
≤ e(Z ′

1, Z
′
2) + 2ε|Z1||Z2|

and thus
d(Z1, Z2) ≤ d(Z ′

1, Z
′
2) + 2ε.
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On the other hand, we have

d(Z1, Z2) =
e(Z1, Z2)

|Z1||Z2|
≥ e(Z ′

1, Z
′
2)

|Z ′
1||Z ′

2|
· |Z

′
1||Z ′

2|
|Z1||Z2|

(4.7)
≥ d(Z ′

1, Z
′
2)(1− ε)2 ≥ d(Z ′

1, Z
′
2)− 2ε

and hence d(Z1, Z2) = d(Z ′
1, Z

′
2) ± 2ε. Furthermore, by ε-regularity of (V1, V2), we have

d(Z ′
1, Z

′
2) = d(V1, V2)± ε and we conclude

d(Z1, Z2) = d(V1, V2)± 3ε.

This holds in particular for Z1 = U1 and Z2 = U2 and therefore the pair (U1, U2) is (8ε, d−
8ε, 0)-super-regular. Let u1 ∈ U1 now. By assumption, we have deg(u1, V2) ≥ δ|V2| and
therefore

deg(u1, U2) ≥ deg(u1, V2 \X2) ≥ (δ − ε2)|V2|
≥ (δ − ε2)|U2| ≥ δ/2 · |U2|.

A similar statement is true for every u2 ∈ U2 finishing the proof.

The following consequence of the slicing lemma will be useful when we prove Lem-
mas 4.3.4 and 4.3.5.

Lemma 4.7.1. Let k be a positive integer and d, ε > 0 with ε ≤ 1/(2k). If Z = (V1, . . . , Vk)

is an ε-regular k-cylinder and d(Vi, Vj) ≥ d for all 1 ≤ i < j ≤ k, then there is some γ ≤ kε

and sets Ṽ1 ⊆ V1, . . . , Ṽk ⊆ Vk with |Ṽi| = ⌈(1− γ)|Vi|⌉ for all i ∈ [k] so that the k-cylinder
Z̃ = (Ṽ1, . . . , Ṽk) is (2ε, d− kε)-super-regular.

Proof. For i ̸= j ∈ [k], let Ai,j := {v ∈ Vi : deg(v, Vj) < (d − ε)|Vj|}. By definition of ε-
regularity, we have |Ai,j| < ε|Vi| for every i ̸= j ∈ [k]. For each i ∈ [k], let Ai =

⋃
j∈[k]\{i}Ai,j.

Clearly |Ai| < (k− 1)ε|Vi| for every i ∈ [k], so we can add arbitrary vertices from Vi \Ai to
Ai until |Ai| = ⌊(k − 1)ε|Vi|⌋ for every i ∈ [k]. Let now Ṽi = Vi \ Ãi for every i ∈ [k] and
let Z̃ = (Ṽ1, . . . , Ṽk). Observe that |Ṽi| = ⌈(1− γ)|Vi|⌉ for all i ∈ [k], where γ = (k − 1)ε. It
follows from Lemma 4.3.1 and definition of Ai that Z̃ is (2ε, d− ε, d−kε)-super-regular.

Given k disjoint sets V1, . . . , Vk, we call a cylinder (U1, . . . , Uk) relatively balanced (w.r.t.
(V1, . . . , Vk)) if there exists some γ > 0 so that Ui ⊂ Vi with |Ui| = ⌊γ|Vi|⌋ for every i ∈ [k].
We say that a partition K of V1 × · · · × Vk is cylindrical if each partition class is of the form
W1×· · ·×Wk (which we associate with the k-cylinder Z = (W1, . . . ,Wk)) with Wj ⊆ Vj for
every j ∈ [k]. Finally, we say that K = {Z1, . . . , ZN} is ε-regular if

(i) K is a cylindrical partition of V1 × · · · × Vk,
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(ii) each Zi, i ∈ [k], is a relatively balanced w.r.t. (V1, . . . , Vk), and

(iii) all but ε|V1| · · · |Vk| of the k-tuples (v1, . . . , vk) ∈ V1×· · ·×Vk are in ε-regular cylinders.

For technical reasons, we will allow some of the sets V1, . . . , Vk to be empty. In this case
(A,∅) is considered ε-regular for every set A and ε > 0. If G is an r-edge-coloured graph
and i ∈ [r], we say that a cylinder K is ε-regular in colour i if is ε-regular in Gi (the graph
on V (G) with all edges of colour i).

In [27], Conlon and Fox used the weak regularity lemma of Duke, Lefmann and Rödl [35]
to find a reasonably large balanced k-cylinder in a k-partite graph. In order to prove a
coloured version of Conlon and Fox’s result, we will need the following coloured version of
the weak regularity lemma of Duke, Lefmann and Rödl. Note that, like the weak regularity
lemma of Frieze and Kannan [50], we get an exponential bound on the number of cylinders,
in contrast to the much worse tower-type bound required by Szemerédi’s regularity lemma
(see [45]).

Theorem 4.7.2 (Duke–Lefmann–Rödl [35]). Let 0 < ε < 1/2, k, r ∈ N and let β = εrk
2ε−5.

Let G be an r-edge-coloured k-partite graph with parts V1, . . . , Vk. Then there exist some
N ≤ β−k, sets R1 ⊆ V1, . . . , Rk ⊆ Vk with |Ri| ≤ β−1 and a partition K = {Z1, . . . , ZN} of
(V1 \ R1) × · · · × (Vk \ Rk) so that K is ε-regular in every colour and Vi(Zj) ≥ ⌊β|Vi|⌋ for
every i ∈ [k] and j ∈ [N ].

Although the original statement of Duke, Lefmann and Rödl [35, Proposition 2.1] does
not involve the colouring and assume that sets V1, . . . , Vk have the same size, their proof can
be easily adapted to prove Theorem 4.7.2.

We are now ready to prove Lemmas 4.3.4 and 4.3.5.

Proof of Lemma 4.3.4. Let k, r ≥ 2, 0 < ε < 1/(rk) and γ = εr
8rkε−5 . Let n ≥ 1/γ and

suppose we are given an r-edge coloured Kn. Let k̃ = rrk and let V1, . . . , Vk̃ ⊆ [n] be
disjoint sets of size ⌊n/k̃⌋ and let G be the k̃-partite subgraph of Kn induced by V1, . . . , Vk̃

(inheriting the colouring). Let ε̃ = ε/2 and β = ε̃r
2rk+1ε̃−5 . We apply Theorem 4.7.2 to

get some N ≤ β−k̃, sets R1 ⊆ V1, . . . , Rk̃ ⊆ Vk̃ each of which of size at most β−1 and a
partition K = {Z1, . . . , ZN} of (V1 \Ri)× · · · × (Vk̃ \Rk̃) which is ε̃-regular in every colour,
and with Vi(Zj) ≥ ⌊β|Vi|⌋ ≥ 2γn for every i ∈ [k̃] and j ∈ [N ]. Note that one of the
cylinders (say Z1) must be ε̃-regular in every colour and, since (V1, . . . , Vk) is balanced, so
is Z1. We consider now the complete graph with vertex-set {V1(Z1), . . . , Vk̃(Z1)} and colour
every edge Vi(Z1)Vj(Z1), 1 ≤ i < j ≤ k̃, with a colour c ∈ [r] so that the density of the
pair (Vi(Z1), Vj(Z1)) in colour c is at least 1/r. By Ramsey’s theorem [92, 43], there is a
colour, say 1, and k parts (say V1(Z1), . . . , Vk(Z1)) so that the cylinder (V1(Z1), . . . , Vk(Z1))

is (ε̃, 1/r, 0)-super-regular in colour 1. By Lemma 4.7.1, there is an (ε, 1/(2r))-super-regular
balanced subcylinder Z̃1 with parts of size at least γn.
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Proof of Lemma 4.3.5. Let k ≥ 2, and let d, ε > 0 with 2kε ≤ d ≤ 1. Let γ = εk
2ε−12 and let

G be a k-partite graph with parts V1, . . . , Vk. Let ε̃ = ε/4 and β = ε̃k
2ε̃−5 . We may assume

that |Vi| ≥ 1/γ for every i ∈ [k] (otherwise we set Ui := ∅ for all i ∈ [k] with |Vi| < 1/γ).
In particular, we have |Vi| ≥ k/(ε̃β) for all i ∈ [k].

We apply Theorem 4.7.2 (with r = 1) to get some N ≤ β−k, sets R1 ⊆ V1, . . . , Rk ⊆
Vk, each of which of size at most β−1, and an ε̃-regular partition K = {Z1, . . . , ZN} of
(V1 \R1)× · · · × (Vk \Rk) with Vi(Zj) ≥ ⌊β|Vi|⌋ for every i ∈ [k] and j ∈ [N ].

Note that the number of cliques of size k incident to R = R1 ∪ . . . ∪Rk is at most

k∑
i=1

β−1
∏

j∈[k]\{i}

|Vj| ≤ ε̃|V1| · · · |Vk|.

Furthermore, since K is ε̃-regular, there are at most ε̃|V1| · · · |Vk| cliques of size k in G that
belong to a cylinder of K that is not ε-regular. Suppose that each cylinder Z ∈ K has at
most (d − 2ε̃)|V1(Z)| · · · |Vk(Z)| cliques of size k. Then the number of k-cliques in G is at
most

ε̃|V1| · · · |Vk|+
∑
Z∈K

(d− 2ε̃)|V1(Z)| · · · |Vk(Z)| ≤ (d− ε̃)|V1| · · · |Vk|,

which contradicts our hypothesis over G. Therefore, there is a cylinder Z̃ in K that con-
tains at least (d − 2ε̃)|V1(Z̃)| · · · |Vk(Z̃)| cliques of size k. In particular, Z̃ is (ε̃, d − 2ε̃, 0)-
super-regular and relatively balanced with parts of size at least ⌊β|Vi|⌋. Finally, we apply
Lemma 4.7.1 (and possibly delete a single vertex from some parts) to get a relatively bal-
anced (ε, d − (k + 2)ε̃)-super-regular k-cylinder Z with parts of size at least β

2
|Vi| ≥ γ|Vi|.

This completes the proof since (k + 2)ε̃ ≤ kε ≤ d/2.

4.8 Concluding Remarks

We were able to prove that sequences of graphs with maximum degree ∆ have finite r-colour
tiling number for every r ≥ 3, but our bound is super-exponential in ∆. Grinshpun and
Sárközy [53] conjectured that it is possible to prove an upper bound which is essentially
exponential in ∆ (see Conjecture 4.1.1). The problem becomes somewhat easier when re-
stricted to bipartite graphs. In fact, our proof gives a double exponential upper bound in ∆

for r-colour tiling numbers of sequences of bipartite graph with maximum degree ∆. Indeed,
the factor k in the recursive bound Equation (4.1) can be dropped for bipartite graphs. It
would be very interesting to confirm Conjecture 4.1.1 for sequences of bipartite graphs.

Another interesting problem is to prove a version of Theorem III for other sequences
of graphs. Given a sequence of graphs F = {Fi : i ∈ N} with |Fi| = i, for every i ∈ N,
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let ρr(F) = supi∈NRr(Fi)/i. If ρr(F) is finite, then we say that F has linear r-colour
Ramsey number. If F is increasing7, then it follows from the pigeon-hole principle that
τr(F) ≥ ρr(F). Indeed, for each n ∈ N, every r-edge-coloured Kn contains a monochromatic
copy from F of size at least i = ⌈n/τr(F)⌉. In particular, since F is increasing, there is
a monochromatic copy of Fi in every r-edge colouring of Kn. This implies that Rr(Fi) ≤
τr(F) · i, and therefore ρr(F) ≤ τr(F).

Graham, Rödl and Ruciński [52] proved that there exists a sequence of bipartite graphs
F = {Fi : i ∈ N} with ρ2(F) ≥ 2Ω(∆). Grinshpun and Sárközy observed that one can
make this sequence increasing, thereby showing that τ2(F) ≥ 2Ω(∆) as well. Conlon, Fox
and Sudakov [28] proved that for every sequence of graphs with degree at most ∆, we have
ρ2(F) ≤ 2O(∆ log∆) while Grinshpun and Sárközy [53] proved that τ2(F) ≤ 2O(∆ log∆). For
more colours, Fox and Sudakov [46] proved that for every sequence of graphs with degree at
most ∆, we have ρr(F) ≤ 2Or(∆2), while Theorem III shows that τr(F) ≤ exp3(Or(∆

3)).
With these results in mind, one can naturally ask if there exists a function f : R → R such

that for every sequence of graphs F = {Fi : i ∈ N} we have τr(F) ≤ f(ρr(F)). That is, if it
is possible to bound τr(F) in terms of ρr(F). In particular, this would imply that sequences
of graphs with linear Ramsey number have finite tiling number. However, the following
example due to Alexey Pokrovskiy (personal communication) shows that τr(F) cannot be
bounded by ρr(F) in general. Let Si be a star with i vertices and let S = {Si : i ∈ N} be the
family of stars. It follows readily from the pigeonhole principle that Rr(Si) ≤ r(i− 2) + 2,
for every i ∈ N, and thus ρr(S) ≤ r. However, the following shows that τr(S) = ∞, for
every r ≥ 2.

Example 4.8.1. For all r ≥ 2 and all sufficiently large n, we have τr(S, n) ≥ r · log(n/8).

Proof. Let τ = r log(n/8) and colour E(Kn) uniformly at random with r colours. Given
a vertex v ∈ [n] and a colour c, let Sc(v) be the star centred at v formed by all the edges
of colour c incident on v. Note that there is a monochromatic S-tiling of size at most τ

if and only if there are distinct vertices v1, . . . , vτ and colours c1, . . . , cτ ∈ [r] such that⋃
i∈[τ ] V (Sci(vi)) = [n].
Fix distinct vertices v1, . . . , vτ ∈ [n] and colours c1, . . . , cτ ∈ [r]. Let U be the random

set U =
⋃

i∈[τ ] V (Sci(vi)). Note that the events {v ∈ U}, for v ∈ [n] \ {v1, . . . , vτ}, are
independent and each has probability 1−(1− 1/r)τ . Therefore, using e−x/(1−x) ≤ 1−x ≤ ex

for all x ≤ 1, we get

P [U = [n]] = (1− (1− 1/r)τ )
n−τ

≤ exp (−(n− τ)(1− 1/r)τ )

≤ exp
(
−n(1− 1/r)τ+1)

7That is, Fi ⊆ Fi+1, for every i ∈ N.
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≤ exp (−n exp (−4τ/r))

≤ exp
(
−
√
n
)
.

Taking a union bound over all choices of v1, . . . , vτ and c1, . . . , cτ , we conclude that the
probability that there is a monochromatic S-tiling of size τ is at most

(rn)−τ · e−
√
n < 1

for all sufficiently large n. Hence, there exists an r-colouring of E(Kn) without a monochro-
matic S-tiling of size at most τ , finishing the proof.

Lee [80] proved that graphs with bounded degeneracy8 have linear Ramsey number.
Example 4.8.1 shows however that it is not possible to extend this result to a tiling result.
Nevertheless, it may be possible to allow unbounded degrees in this case.

Question 1. Is there a function ω : N → ∞ with limn→∞ ω(n) = ∞, such that the following
is true for all integers r, d ≥ 2? If F = {F1, F2, . . .} is a sequence of d-degenerate graphs
with v(Fn) = n and ∆(Fn) ≤ ω(n) for all n ∈ N, then τr(F) < ∞.

Böttcher, Kohayakawa and Taraz [16] proved an extension of the blow-up lemma to
graphs H of bounded arrangeability9 with ∆(H) ≤

√
n/ log(n). Using their result, it is

possible to prove the following strengthening of Theorem III.

Theorem 4.8.2. For all integers r, a ≥ 2 and all sequences of a-arrangeable graphs F =

{F1, F2, . . .} with |Fn| = n and ∆(Fn) ≤
√
n/ log(n) for all n ∈ N, we have τr(F) < ∞.

The proof is almost identical, with the following two differences. First, instead of
Lemma 4.3.3, we need to use the blow-up lemma mentioned above together with the follow-
ing alternative to Hajnal’s and Szemerédi’s theorem which guarantees balanced partitions of
graphs with small degree. Given a sequence F = {F1, F2, . . .} of a-arrangeable graphs with
∆(Fn) ≤

√
n/ log(n) for every n ∈ N, we define another sequence of graphs F̃ = {F̃1, F̃2, . . . }

as follows. Since every a-arrangeable graph is (a + 2)-colourable, we can fix a partition of
V (Fn) = V1(Fn) ∪ . . . ∪ Vk(Fn) into independent sets, where k = a + 2. Then, for every
j ∈ N, we define F̃jk to be the disjoint union of k copies of Fj. Note that each F̃jk has
a k-partition into parts of equal sizes (by rotating each copy around). Finally, for each
j ∈ N ∪ {0} and every i ∈ [k − 1], we define F̃jk+i to be the disjoint union of F̃jk and i

isolated vertices (here F̃0 is the empty graph). Observe that all F̃n have k-partitions into

8A graph G is d-degenerate if there is an ordering of its vertices so that every v ∈ V (G) is adjacent to at
most d vertices which come before v.

9A graph G is called a-arrangeable for some a ∈ N if its vertices can be ordered in such a way that for
every v ∈ V (G), there are at most a vertices to the left of v that have some common neighbour with v to
the right of v.
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parts of almost equal sizes. Furthermore, every F̃ -tiling T corresponds to an F -tiling T̃
of size at most (2k − 1)|T |. Therefore, it suffices to prove Theorem 4.8.2 for graphs with
balanced (a+ 2)-partitions.

Second, we need to replace Theorem 4.4.1 with a similar theorem for a-arrangeable
graphs G with ∆(G) ≤

√
n/ log(n), where n = v(G). For two colours, such a theorem was

proved by Chen and Schelp [22]. For more than two colours, this was (to the best of the
author’s knowledge) never explicitly stated, but is easy to obtain using modern tools (for
example, by applying the above mentioned blow-up lemma for a-arrangeable graphs).
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